
1

Gerhard Wolf

The BASIC Interpreter for Laser 110, 210, 310 and VZ 200

- 2 -

HC - My Home computer

Gerhard Wolf

The BASIC Interpreter for Laser
110, 210, 310
and VZ 200

Structure and working method

VOGEL BOOK PUBLISHING
WURZBURG

- 3 -

Published by the same author:
ROM listings for Laser 110, 210, 310 and VZ 200

(HC - My Home Computer)
ISBN 3-8023-0852-2

The Laser DOS in the Laser 110, 210, 310 and VZ 200

(HC - My Home Computer)
ISBN 3-8023-0868-9

CIP short title recording of the German Library

Wolt, Gerhard:
The BASIC Interpreter for Laser 110, 210, 310 and VZ
200: Structure working method / Gerhard Wolf. - 1st

edition - Würzburg: Vogel, 1985.
(HC - My Home Computer)

ISBN 3-8023-0874-3

ISBN 3-8023-0874-3
1st edition. 1985

All rights, including the translation, reserved. No part of the work may be in
in any form (print, photocopy, microfilm or any other process)

Reproduced or reproduced without the written permission of the publisher
processed, duplicated or distributed using electronic systems

become. These are those expressly mentioned in 88 53, 54 UrhG
exceptions are not affected.

Printed in Germany
Copyright 1985 by Vogel-Buchverlag Würzburg

Cover design: Bernd Schröder, Böhl
Manufacture: Alois Erdl KG, Trostberg

- 4 -

0. Introduction.. 9
1. What is an operating system?.. 11
2. General information about the LASER 110-310 operating system..............................13
3. The Memory allocation.. 15
4. Input/Output Area (6800H = 6FFFH)... 19

Keyboard input:.. 20
Cassette Input.. 20
Screen control.. 20
Speaker output... 21
Cassette output.. 21
Vertical SYNC-Pulse.. 21

5. The screen memory... 23
6. The communication area...25
7. The free storage... 27
8. Operating system features..31

System initialization..31
Input routine... 34
Interpretation and execution control...37
The execution routines... 41
Arithmetic and mathematical functions...43
Internal representation of the data... 46
Input/output driver.. 49

9. Addresses and tables of the BASIC interpreter.. 55
Internal tables...56

BASIC keyword table (1650H - 1821H)..56
Address tables of the execution routines... 58

Address table of the BASIC instructions (1822H - 1899H)...................................58
Address table of the BASIC functions (1608H - 164FH)...................................... 59

Ranking of arithmetic operations..60
Arithmetic routines..60
Data conversion (type matching)..61
Error messages.. 62

External tables..63
The BASIC communication area (7800H - 7AE8H)... 63
The string cache (783BH - 78D2H).. 73
Table of types for every variable (7901H - 791A)... 74
Screen Row Status - Table (7AD7H - 7AE6H)... 75
Programs data (Program Statement Table = PST)...75

- 5 -

The variables - table...78
10. The use of the BASIC Stack.. 83

Stack usage in a FOR/NEXT loop..83
Stack usage for a GOSUB instruction.. 84

11. Expression analysis...85
12. Function derivatives.. 91

Sine.. 92
Exponential function... 93
Arctangent.. 94
Natural logarithm.. 95

13. Subroutines of the BASIC interpreter.. 97
Input/output routines...97

Reading from the keyboard.. 98
CALL 2BH Evaluate keyboard..98
CALL 49H Waiting for keyboard input.. 99
CALL 3E3H Reading a line...99

Display characters on the screen... 101
CALL 33AH Display character on screen... 101
CALL28A7H Output a line.. 102
CALL 1C9H Clear the screen... 103
Direct output to screen memory... 104

Output characters to the printer..105
CALL 3BH Print a character... 105
CALL 5C4H Determine printer status... 106

The cassettes - input/output... 107
CALL 3511H Write a byte to the cassette...108
CALL 3558H Write file header to cassette... 108
CALL 3AE8H Query BREAK key..110
CALL 388EH Create checksum..110
CALL 3775H Read one byte from cassette.. 110
CALL 35E1H Search for file on the cassette.. 111
CALL 358CH Transfer file name...113
CALL 386BH Load start and end address.. 113

Speaker - output... 113
CALL 345CH Emit a single tone... 114
CALL 2BF5H Play a melody... 114

Conversion routines..115
Data type conversion..115

CALL 0A7FH Floating point number into integer.. 115

- 6 -

CALL 0AB1H Integer to single precision number... 116
CALL 0ADBH Integer to double precision number... 117

ASCII string to numerical representation..118
CALL 1E5AH Convert ASCII string to integer...118
CALL 0E6CH Convert ASCII string to binary value of any type......................... 119
CALL 0E65H ASCII string to double precision... 120

Convert binary value to ASCII string.. 120
CALL 0FAFH Convert content from HL to ASCII..120
CALL 132FH Convert integer to ASCII...121
CALL 0FBEH Convert Floating point value into ASCII string............................. 121

Arithmetic routines..123
Routines for processing integers..123

CALL 0BD2H Add two integers.. 123
CALL 0BC7H Subtract two integers... 124
CALL 0BF2H Multiplication of 2 integers..125
CALL 2490H Division of integers..126
CALL 0A39H Comparison of two integers..126

Single precision aritimetic operations...127
CALL 0716H Single precision addition... 127
CALL 0847H Single precision multiplication...128
CALL 2490H Single precision division..129
CALL 0A0CH Comparison of two single precision values..................................129

Double precision arithmetic operations.. 130
CALL 0C77H Double precision addition... 130
CALL 0C70H Double precision subtraction.. 130
CALL 0DA1H Double precision multiplication.. 131
CALL 0DE5H Double precision division... 132
CALL 0A4FH Comparison of two double precision values.................................132

Mathematical routines.. 133
CALL 0977H Determine absolute value ABS(N).. 133
CALL 0B37H Finding the next lower integer INT(N)...134
CALL 15BDH Determine the arc tangent ATN (N)... 135
CALL 1541H Find the cosine of an angle COS (N).. 135
CALL 1547H Find the sine of an angle SIN (N)..136
CALL 1439H Finding the exponential function e^x EXP (N).............................. 137
CALL 0809H Natural logarithm LOG (N).. 139
CALL 13E7H Find root of N SQR (N)... 139
CALL 14C9H Generate random number RND (N)... 140

RESTART - vectors.. 141

- 7 -

RST 08H Check a character...141
RST 10H Find next valid character...142
RST 18H Compare DE with HL.. 143
RST 20H Determine data type... 143

Transfer routines.. 144
CALL 09B4H Single precision number from BC/DE to work area 1................... 144
CALL 09B1H Single precision number from address HL to work area 1............145
CALL 09CBH Single precision number from work area 1 to memory................ 146
CALL 09C2H Single precision number from memory into BC/DE regs..............146
CALL 09BFH Single precision number from workspace 1 to BC/DE regs......... 147
CALL 09A4H Transfer workspace 1 to the stack..147
CALL 09D3H Variable transfer routine... 148
CALL 29C8H Transferring a string variable..148

BASIC functions... 149
CALL 1B2CH Determine line in the program..150
CALL 260DH Get the address of a variable... 151
CALL 1EB1H GOSUB Emulation... 151

- 8 -

0. Introduction

The small computers in the LASER 110, 210, 310 and VZ200 series owe their
popularity to the comfortable and comprehensive BASIC interpreter, which is located
in memory modules (ROMs) inside the computer and is fully available to all users in
all its functions after switching on.

This is a slightly modified variant of the well-known and globally used MICROSOFT
BASIC, which is part of basic operating software. This operating software consists of
a basic operating system and the extensive BASIC interpreter.

A floppy disk operating system (D0S = Disk Operating System) serves as an
extension. This is also permanently stored in ROM modules, but is not housed in the
main computer, but rather in the floppy disk controller.
By connecting the floppy disk controller to the system bus, these ROM modules are
activated and add the software required to operate the disk drives to the basic
system.

A further increase in performance can be achieved with an EXTENDED BASIC
package, which was developed in Germany and expands the language range of the
built-in BASIC interpreter to more than 38 commands, including powerful ones such
as PLOT, PAINT, CIRCLE, RENUMBER and many others.

The aim of this book is to describe the essential functions of the BASIC ROM so that
you can better understand the internal processes in your computer and make optimal
use of all functions. The book is also intended to give assembler/machine program
experts the opportunity to use BASIC ROM functions in their own programs, be it to
carry out simple data conversions, use the input/output interfaces or mathematical
functions (e.g. sine , cosine, etc.) not having to program it yourself.

Not every routine can be described in every detail. However, the description
contained here should be sufficient to be able to carry out further detailed
investigations in the ROM listing itself.

A detailed and documented ROM listing and a detailed description of the diskette
operating system for LASER 110-310 and VZ200 have been published as
independent volumes by Vogel-Verlag.

- 9 -

My thanks go to Mr. Dieter Effkemann for his support and work on Chapter 12
"Functional Derivations" and to my son Rainer for testing the program examples and
careful proofreading.

- 10 -

1. What is an operating system?

A computer without any kind of operating system is a useless box filled with
electronic components.

The need for an operating system arises solely from the need to establish a means
of communication between the computer and its environment. This includes, among
other things, the constant monitoring of all inputs, e.g. the keyboard, in order to be
able to receive instructions and data and also the output of data, e.g. on a connected
screen, to be able to display or transmit results.

If you type in a BASIC program on your LASER computer and then want it to be
executed, there must already be a program in the computer that first accepts your
entries and puts them in the correct location in the memory. The running of the
program also requires strong support from this internal program. One such program
present in the computer is the operating system.

There are now thousands of different operating systems, from simple systems in the
ROM of home and personal computers to complex structures that can occupy entire
disk units in large-scale computing systems.

The differences are due on the one hand to the different computers with different
hardware equipment, but on the other hand also to the requirements placed on such
a system. The operating system of a computer for process control certainly looks
completely different than that for a commercial application, although both may run on
the same hardware.

For this reason, no precise definition of an operating system can be drawn up.

Despite all the differences, the basic building blocks of the operating systems are
similar and, in general, the following functional building blocks can be recognized in
most systems:

1. A monitor program that constantly monitors all system inputs (e.g. the keyboard
query).

2. Device driver routines that satisfy the specific physical needs of the connected
peripheral devices such as keyboard, monitor, cartridge, floppy disk or printer.

3. General service routines that initialize system functions after entering certain
commands (in LASER, e.g. LIST, CLOAD).

- 11 -

4. Language converters (compilers, assemblers, interpreters) that enable the use of a
programming language (e.g. BASIC, PASCAL, FORTRAN).

5. Runtime support routines for the respective programming language.
These include the arithmetic and mathematical functions for which there are
ready-made routines in the operating system that are only called by the respective
language.

6. Utility routines for device and memory management. These maintain internal tables,
manage the various memory areas and control access to the input/output devices.

The following sections will identify and describe these components within the LASER
operating system.

Since the operating software of the LASER computer is located in ROM modules within the
computer, all of its functions are available immediately after switching on.

For other computers and operating systems, the operating software must first be read from
an external memory (disk, tape, diskette, cassette). But this also requires a small program.
This is called the boot loader (IPL = Initial Program Loader), which exists somewhere in the
system or must be entered manually.

- 12 -

2. General information about the LASER 110-310
operating system

The operating system of the LASER computers 110-310 and the VZ200 is a
self-contained program package that can run independently (stand alone system),

It includes a BASIC interpreter as a language converter as well as the necessary
support and auxiliary routines for executing BASIC programs. It also offers the option
of saving programs to cassettes and reloading them from cassettes.

The floppy disk operating system is only available when the floppy disk controller is
connected. It expands the language scope of the BASIC interpreter to include
instructions for diskette editing and offers the option of saving programs to diskettes
and loading them again from there.

If a floppy disk drive is connected, the floppy disk operating system is linked to the
internal operating system when the computer is switched on.

The floppy disk operating system has its own interpreter for recognizing and
processing the additional commands, but makes intensive use of support and
auxiliary routines from the internal system and is therefore not an independently
executable program unit.

EXTENDED BASIC is a language extension of the BASIC interpreter and offers the
convenience of additional commands, especially in the graphics area and in program
development. Depending on the level of expansion of your computer, it is available
on cassette or floppy disk and must be loaded into the computer in addition to the
internal operating system.

- 13 -

- 14 -

3. The Memory allocation

0H
Internal operating

system

0H
Internal operating

system

4000H

not used

4000H
DOS Operating System

6000H not used

6800H Input/output area 6800H Input/output area

7000H Screen storage 7000H Screen storage

7800H Communication area 7800H Communication area

7AE9H

free memory (RAM)

7AE9H

free memory (RAM)

DOS workspace

FFFFH FFFFH

without DOS with DOS

- 15 -

The first 16K are dedicated exclusively to the internal operating system.

If you consider the 5 basic building blocks of an operating system, the situation in
this area is roughly as shown below. However, no clear separation was carried out;
individual code elements, which were assigned to a specific basic module based on
their function, were scattered wildly in the memory. Especially at the end of the ROM
area you will find a number of “backpacks” that were created there during later
version changes.

0000H Device drivers

0700H Arithmetic
mathematical routines

1600H Support routines

1A00H Monitor

1C00H

BASIC Interpreter

2C00H Auxiliary routines

4000H

If a floppy disk system is connected, the following 8K are occupied by the floppy disk
operating system, otherwise the address area up to 6800H is not occupied by
memory modules.

This is followed by an area titled 'Input/Output Area'. There is no memory chip
hidden behind these addresses. With appropriate addressing, very direct interfaces
to input/output blocks are addressed. For example, the keyboard is wired into this
address space as a matrix, whereby each individual key can be queried directly.

This is followed by the screen memory with 2K. Behind it is a 2K RAM component
that is constantly read and displayed by the image generator.

- 16 -

In the following communication area, work areas, address pointers and
administration tables are created and used by the BASIC interpreter.

The free memory is located next to the communication area. This is the area in
which the operating system stores BASIC programs and associated variables. You
can also load your assembler or machine programs there and run them.

When the floppy disk drive is connected, a 318-byte long work area is created at the
end of the DOS memory during system initialization, which fulfills similar functions for
the DOS as the communication area in BASIC. If no floppy disk drive is connected,
the free memory extends to the end of the RAM.

- 17 -

- 18 -

4. Input/Output Area (6800H = 6FFFH)

This memory area is used to directly control input/output modules such as keyboard,
speakers, cassette and image generator.

When addressing input or output, the respective bits have different meanings.

The keyboard matrix, the cassette input and the vertical SYNC pulse of the image
generator are read in via these addresses.

On the output side, the image generator, the loudspeaker and the cassette are
controlled and addressed via this address area. Since an output value cannot be
read back, the operating system always keeps a current copy of the output value in
the address 783BH of the communication area and uses this as a reference if further
output is to be made.

Except for keyboard input, it is irrelevant which address of the address space you
address; only the top 5 address bits are evaluated.

Input:

Bit Used by

7 Vertical Sync Pulse (CPU Interrupt line)

6 Cassette Input

5 .. 0 Keyboard

Ouput:

Bit Used by

7 .. 6 not used

5 loudspeaker

4 image generator

3 image generator

2 cassette

1 cassette

0 loudspeaker

- 19 -

Keyboard input:

The keyboard forms a matrix of 8 rows and 6 columns in the address space 6800H
to 68FFH, which is organized as follows:

A8 - A15 = 68

A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D4 D5

0 1 1 1 1 1 1 1 H L : K ; J = 687FH

1 0 1 1 1 1 1 1 Y O Ret I P U = 68FBH

1 1 0 1 1 1 1 1 6 9 - 8 9 7 = 68DFH

1 1 1 0 1 1 1 1 N . , Spc M = 68EFH

1 1 1 1 0 1 1 1 5 2 3 1 4 = 68F7H

1 1 1 1 1 0 1 1 B X Shift C Z V = 68FBH

1 1 1 1 1 1 0 1 G S Ctrl D A F = 68FDH

1 1 1 1 1 1 1 0 T W E Q R = 68FEH

You can see that a '0" in an address bit determines the line to be read. If one of the
data bits read = 0, the corresponding key at the intersection of the matrix is pressed

If more than one address bit is set to 0, several lines will be read out at the same
time. By addressing 6800H you can read the matrix at once.

Cassette Input
The pulses from the cassette recorder are read in via bit 6 of the address 6800H (or any
other in the range 6800H-6FFFH).

Screen control
Control information can be transferred to the image generator via the address range
6800H-6FFFH.

Bit 3 = Screen mode
0 - Text
1 - Graphic

Bit 4 = Display Color
0 - Green
1 - Red

- 20 -

Speaker output

Use bits 0 and 5 to control the built-in small speaker. The two bits on the outside
must always be complementary, otherwise you will never produce a sound {i.e. bit
0=1 and bit 5=0 or vice versa). By switching these bits at a certain frequency, the
pitch is determined.

Cassette output

You output data bits to the cassette via bit positions 1 and 2 of the address space
6800H - 6FFFH, whereby both bits should always be the same.

For all three outputs (Image Generator, Speaker, Cassette), you must always respect
the previous status and only change the bits you want to change. Therefore, the
ROM routines always maintain a current copy of the output byte in address 783BH of
the communication area. You should also take this into account and understand it if
you ever want to spend something directly on these building blocks.

Vertical SYNC-Pulse

The vertical SYNC pulse generated by the image generator (every 20 ms for PAL) is
normally used to generate an interrupt in the CPU. As described in more detail later,
this interrupt is used to synchronize the transfer to the video RAM in order to obtain a
flicker-free image.

This pulse can also be checked via bit 7 of the address range 6800H-6FFFH, even if
the interrupts are switched off (disabled). You can use this to be able to carry out
screen synchronization within your own program even when interrupts are switched
off, without having to program your own interrupt handling.

- 21 -

- 22 -

5. The screen memory

The characters to be displayed on the screen must be entered into the screen
memory. This memory area is constantly scanned by the image generator and the
image information is displayed 1:1 on the screen. The screen memory occupies the
address space 7000H-77FFH (= 2 KB).

In text mode only the first 512 bytes are used, where each byte can hold a character
to be displayed. This corresponds to an output capacity of 16 lines of 32 characters.

Please note that custom screen codes are used, which do not always correspond to
the ASCII code.

Two display colors can be selected via the screen control, these are
green and red. There are two types of display, whereby the selected color is used as
a background color or as a font color. The display type is controlled via address
7818H of the communication area. You can also switch between the display types
using the inverse character display.

Block graphics in 8 different colors are also possible within the text output.

Character table:

00 = @ 0B = K 16 = V 21 = ! 2C = , 37 = 7

01 = A 0C = L 17 = W 22 = “ 2D = - 38 = 8

02 = B 0D = M 18 = X 23 = # 2E = . 39 = 9

03 = C 0E = N 19 = Y 24 = $ 2F = / 3A = :

04 = D 0F = O 1A = Z 25 = % 30 = 0 3B = ;

05 = E 10 = P 1B = [26 = & 31 = 1 3C = <

06 = F 11 = Q 1C = \ 27 = ‘ 32 = 2 3D = =

07 = G 12 = R 1D =] 28 = (33 = 3 3E = >

08 = H 13 = S 1E = ^ 29 =) 34 = 4 3F = ?

09 = I 14 = T 1F = _ 2A = * 35 = 5

0A = J 15 = U 20 = 2B = + 36 = 6

Codes 40H to 7FH represent the same characters in reverse.

- 23 -

A block graphic character is identified by bit 7 = 1.
Bit positions 4, 5 and 6 determine one of eight colors:

Bit 6 5 4
0 0 0 green
0 0 1 yellow
0 1 0 blue
0 1 1 red
1 0 0 buff
1 0 1 cyan
1 1 0 magenta
1 1 1 orange

The shape of the lock graphic is determined in bit positions 0 - 3.

Each of the four bit positions is assigned to a quarter of a character position. The
figure below shows the assignment of the individual bits
represents:

3 2

1 0

In graphics mode, the total 2K of the screen memory is used to achieve a resolution
of 128 x 64 points (pixels).

The information of four pixels is stored in each byte, with 2 bits assigned to each
individual pixel.

These 2 bits can be used to display four different colors, and you can choose
between two sets of colors using the screen control (display color).

6800H Bit 4 = 0 Bit 4 = 1

00 green buff (Background)

01 yellow cyan

10 blue magenta

11 red orange

- 24 -

6. The communication area

The communication area is the operating system's notepad and is located in the
address range 7800H to 7AE9H.

It contains tables, pointers and addresses that are created and managed there by
the operating system.

In addition, there are work areas and buffer areas that are required when performing
arithmetic operations and input/output operations.

There are a whole series of “RAM expansion outputs” within the operating system.
These are CALL calls to a 3-byte area in the communication area. Normally the
outputs in the communication area are occupied by a RETurn.

You can connect your own connection routines to the various operating system
functions via the RAM expansion outputs. EXTENDED BASIC uses this very
intensively; DOS also connects to the BASIC interpreter via such an extension
output.

Some auxiliary routines, which must be modified before being called, have also been
placed in the communication area. They are brought there from the ROM after the
computer is switched on during the system initialization. One of these routines is a
subroutine of the division function. This is modified from the ROM division routine
and called to perform special subtractions and comparisons.

A description of each individual field in the communication area can be found in
Chapter 9 "Addresses and tables of the BASIC interpreter".

- 25 -

- 26 -

7. The free storage

The free memory is available for you to load and run your own BASIC and machine
programs.

After switching on the computer, the free memory extends from the end of the
communication area to the end of the physical memory, or to the beginning of the
D0S work area if the floppy disk drive is activated.

The limits of the free memory are displayed in two address pointers of the
communication area:

78A4H/78A5H contains the start address
78B1H/78B2H contains the end address

By manipulating these pointers you can reduce the free memory from above or
below. This is useful if you want to protect a known memory area from the BASIC
interpreter (see DOS workspace).

If you use the free memory exclusively for machine programs, the entire space is
available to you without restrictions; the machine program is responsible for
managing this space itself.

With BASIC programs, the BASIC interpreter takes over the memory management of
the free memory area. This is divided into different sub-areas and structures and
managed dynamically.

- 27 -

Communication
area

PST = Program
Statement Table

78A4H
BASIC

Program Statement Table
(PST)

VLT = Variable List
Table

FSL = Free Space
List

78F9H
BASIC

Variable List Table
(VLT)

78FDH
Free space List

(FSL)

78E8H
Stack

78A0H
String Area

78B1H

Please note that the areas shown above do not have fixed addresses assigned to
them. These areas are dynamic, i.e. their sizes and boundaries are fluid and are
constantly adapted to current needs.

Look at the Programs table. This contains the loaded BASIC program. If you insert a
program line there, the program table expands and at the same time the beginning of
the variable table, which is directly connected to the programs table, moves. If you
define a new variable in your program, the variable table will enlarge,

Since the boundaries of the individual areas are fluid, their current. Addresses are
kept in address pointers of the communication area. This allows the tables to be
moved according to the requirements of the program and at the same time offers the
user the possibility of manipulation.

- 28 -

The Programa table (PST) contains the individual lines of the BASIC program in
compressed format. Compressed means that within the lines the BASIC key type is
replaced by 1-byte hexadecimal herts {TOKEN).

The start address of the program table is contained in the address pointer 78A4H of
the communication area. After loading a program, it remains constant. If the
beginning of the free memory is not manipulated (EXTENDED BASIC does
something like this, for example), you will find the entry 7AE9H there.

The ending address of the Program table varies with the size of the program. It is
identical to the start address of the variable table and can be found in the address
pointer at 78F9H.

The variable table (VLT) contains names and values of all variables defined in a
BASIC program. It is divided into two sections, Section 1 contains the simple
variables and Section 2 contains dimensioned variables, i.e. matrices.

Variable names and values are entered into the variable table in the order in which
they appear during the execution of a program. Each new variable that appears
increases the size of the table. Once variables have been defined, they remain in the
table until the system is reinitialized, i.e. you cannot delete them, but only change
their value.

From the end of the variable table to the beginning of the stack area is the remaining
free memory, which originally extended from the end of the communication area to
the end of the memory. You can see from the picture that this free memory is
restricted from above (lower address space) by the programs table and the variable
table and from below (upper address space) by the string area and the stack area.
This works fine until the end of the variable table collides with the stack area. In such
a case, the error message "OUT OF MEMORY" is output.

The stack area is very dynamic. It constantly serves the operating system as a point
memory for return addresses and register contents. Each CALL, PUSH or RST
command increases the stack area by 2 bytes, each RET or POP instruction reduces
the stack area accordingly.

- 29 -

The BASIC interpreter also writes entire memory blocks onto the stack. Each
FOR/NEXT loop creates an 18-byte block on the stack and each GOSUB instruction
creates a 7-byte block.

The last section shown behind the stack area is the string area. With the exception of
the text variables firmly defined in the program (contained in quotation marks in the
program text), all text variables {=strings) are stored in this area. For text variables,
the variable table contains the reference address to the string area or the program
table where the corresponding text can be found.

The length of the string area is defined as 50 bytes during initialization. However, you
can vary this using the CLEAR command.

- 30 -

8. Operating system features

The basic building blocks of an operating system have already been discussed
several times in the previous sections. Using this breakdown as a guide, the LASER
operating system can be divided into the following seven functional areas:

1. System initialization
2. Input routine
3. Interpretation and execution control
4. Command and command execution
5. Arithmetic and mathematical routines
6. Input/output driver
7. System functions

Each of these functional areas will now be examined in more detail.

System initialization

In the first section of this book it was mentioned that the operating system of the
LASER is located in ROM components and is available immediately after switching
on. This is only the half truth. Although this system does not require any additional
components that have to be loaded from anywhere, some initialization functions
must be carried out, such as setting up the communication area, before the
operating system can be used.

What happens now during system initialization?

After switching on, the computer always begins its program execution at the absolute
address 0 of the ROM area. Then the image generator is switched to text mode and
branched to address 0674H.

At 674H, the ROM contents from address 06D2H to address 0707H are transferred
to the communication area from 7800H to 7835H. This initializes the addresses for
the restart vectors RST 8, RST 10, RST 18 and RST 20 so that a jump to the current
ROM routines can be made from there. The restart vectors RST 28, RST 30 and
RST 38 are assigned RET commands (no function).

- 31 -

The "Device Control Blocks" for keyboard, screen and printer are also filled with
output values (7815H - 782CH). The memory area 7836H to 785CH is deleted
(00H).

For further initialization, a branch is made to address 75H. The following functions
are carried out there:

The ROM range from 18F7H to 191DH is transferred to the communication
range from 7880H to 78A6H. This area contains, among other things, the
auxiliary routine for division. Some switches and pointers are also initialized,
including the start address of the program table at 78A4H.

The input/output buffer starting at address 79E8H is initialized by entering its
start address into the buffer pointer 78A7H and writing a header of
3AH-00H-2CH in front of the buffer. This buffer is used, among other things, to
temporarily store each program line to be input and output.

Address vectors for special diskette commands from address 7952H to
79A5H become address 01D2H with a jump command
(JP 01D2H) preassigned. This causes the error message "DISK COMMAND
ERROR" when one of these vectors is accessed. These disk vectors are a
relic from an earlier use of this operating system and are not used by the
LASER computer.

The RAM expansion outputs 79A6H to 79E2H are preset with RET (C9H).

Address 7AE8H (directly in front of the free memory) is loaded with 00H
and the stack pointer is first initialized with 79F8H (in the input/output buffer).
This happens because the initialization now continues with CALL calls and a
stack is required to store the return address.

A subroutine at 1B8FH (within the NEW command routine) is called, where
the stack pointer is set to 7B4CH, an address is the free memory area.

The string buffer (from address 78B5H) is marked as empty by setting the
address pointer at 78B3H to the first entry.

The screen is set as the output device and, if necessary, a carriage return is
output to a connected printer.

The indexing lock is reset and the end of the stack area is marked 0.

- 32 -

The image memory is deleted (CLS).

The memory end address is determined and stored in 78B1H. For the string
area, 50 bytes are reserved at the end of the free memory and the start
address of the string area is stored in 78A0H.

The subroutine 1B4DH (NEW) is called.

There the TRACE function and the AUTO mode are switched off. The
beginning of the Programs table is initialized to 00H-00H and marks it as
empty.

The address pointer to the variable table (=end address of the program table)
at 78F9H is set to the start address of the program table + 2. Since the
variable table is also empty, the end addresses of both parts at 78FBH and
78FDH are set to the same value.

The TypeCode table starting from 7901H is set to "single precision" for all
variables.

The stack area is set up before the string area.

A subroutine is then called at 3484H. There it is checked (CALL 3FA0H)
whether the CTRL key was pressed at the same time as switching on (green
background) and the background flags 7818H and 7819H are set accordingly.
To create the correct background, the screen is cleared again.

The basic setting 20H is set via the input/output addresses (6800H) and is
also noted in the memory at 783BH. This means "display color = green" and
"text mode".

The basic values for the screen cursor delay counter (783AH) and the flash
counter (7841H) are set.

The color value is set to "yellow" (7846H) and the interrupt vector in 787DH to
RETurn (C9H).

- 33 -

Now the introduction text "VIDEO TECHNOLOGY..." is finally output and the Z80 is
switched to interrupt mode 1. This means that with maskable interrupts the program
address 38H is jumped to. If interrupts are permitted (EI), such an interrupt occurs
every 20 milliseconds.

The final phase of initialization takes place from address 068EH. There it is checked
one after the other whether there is a ROM cartridge slot in the address areas
4000H, &6000H or 8000H (e.g. the DOS from address 4000H). Such a cassette
insert must begin at the above addresses with the byte sequence
AAH-55H-E7H-18H.

If this byte sequence is detected at one of the addresses, it branches to the following
address, otherwise the program in the BASIC input routine continues.

In this way, among other things, it is determined whether a floppy disk system is
connected. The floppy disk additional routines are housed in ROMs in the floppy disk
controller. The addressing starts at address 4000H, with the first four memory
locations being occupied by AAH-55H-E7H-18H. If the diskette system is connected,
this byte sequence is found at 4000H and the program for initializing the DOS
continues from address 4004H.

Input routine

The input routine is similar in all operating systems. Their function is to accept
keyboard input and react to received commands.

In the operating system of the LASER computers 110, 210, 310 and the VZ200, both
system commands and BASIC program lines are processed by the input routine.

The entry into the input routine occurs at address 1A19H, also known as the start of
the BASIC main loop or BASIC warm start address.

The message "READY" is initially output there and the RAM expansion output at
78ACH is called (initialized with RET).

- 34 -

The functions of the input routine can be divided as follows!

1. Read line from the keyboard
2. Replace BASIC keywords in the line with TOKENs
3. Check whether a direct command was entered (BASIC line without line

number).
If yes, go to 6.

4. Transfer line to program table.
5. back to 1
6. Interpret and execute

The input loop starts at address 1A33H. If the system is in AUTO mode, the line
number and, if this is already present in the program, also the line content are
output.

With a CALL to the routine at 03E3H, a line is taken over from the keyboard and
transferred to the input/output buffer starting at address 79E8H. If the line entry was
completed with the BREAK key, the loop immediately returns to the beginning of the
loop (1A33H), i.e. the line entry is ignored.

An entered line number is converted from ASCII to binary format (CALL 1E5AH).

In the subroutine from 1BC0H onwards, the input line is examined and all BASIC
keywords contained therein are replaced by 1-byte hexadecimal identifiers, the
"TOKENS".

There is then a jump to the RAM expansion output at 79B2H, a good opportunity if
you want to handle the input line yourself (connecting a machine routine). Among
other things, EXTENDED BASIC was added here to recognize and implement the
additional commands.

From 1AA4H system checks whether a line number has been entered. If not, it is a
direct command. In this case, the system immediately branches to interpretation and
execution control (1D5AH).

If a line number is available, the line entered is added or inserted in the correct
position in the program table.

If a line with the same number already exists, it will be deleted beforehand using the
routine at 2BE4H.

- 35 -

The end address of the program table (78F9H) is increased by the length of the
entered line (1AC2H....) and with the routine at 1955H space is made for the new
line by moving the lines behind it with a higher line number up in the memory.

From 1AD0H the preparation and transfer of the line from the input/output buffer to
the program table begins.

If the line entered is empty, this is noted with 1ABFH and the transfer routine is
skipped.

The reference addresses for line concatenation are updated throughout the program
by the routine at 1AFCH. Finally, 1B5DH in the NEW routine is called to delete the
variables table and reset some flags and identifiers so that it is no longer possible to
continue the program with CONT after inserting or changing a line.

Then there is a jump back to the beginning of the loop to read the next line.

The AUTO command is only available in EXTENDED BASIC, but can also be
switched on in normal BASIC using a POKE 30945.1 if you are satisfied with the
default values (initial value = 10, step size = 10).

In AUTO mode, the line number to be output is provided in address 78E2H/78E3H
and the increment value at 78E4H,

The lines are read in AUTO mode in section 1A3FH to 1A76H. The line number is
first output from 78E2H/78E3H and, if this line already exists (search with 1B2CH),
also the line content with 2E53H.

Reading is also done via 03E3H. If the BREAK button is pressed, in addition to
ignoring any input, the AUTO mode is also switched off. After reading the line (from
1A60H), the line number stored at 78E2H/78E3H is increased by the value from
78E4H.

The further processing of the line takes place, as with the input without AUTO, from
1A81N.

- 36 -

Annotation:

On the LASER 110, 210, 310 and VZ200, a number of BASIC keywords are not
encoded, although the necessary execution routines and TOKENs are present (see
command table from 1650H). This was probably done for copyright reasons.
EXTENDED BASIC opens and makes available some of these commands and
functions, along with many additional ones.

Interpretation and execution control

System commands and BASIC commands are executed through interpretation.

Interpretation means that all commands and all BASIC lines are only analyzed by the
operating system at execution time and the necessary operations are initiated.

Such a procedure is common practice at the system command level. A command is
read in, interpreted and the corresponding execution routine is triggered.

Executing a program using interpretation is generally limited to home and personal
computers and only for a few languages, such as BASIC or LOGO.

The alternative to interpretation is to compile beforehand using a compiler.

Compilers translate the source code, which is the input lines in the corresponding
language (FORTRAN, COBOL, PASCAL, PL1, etc.), into directly executable
machine code, called object code.

Such object code is loaded into memory and started at execution time using a loader
(part of the operating system). Once started, such a program runs almost completely
independently of the operating system.

The LASER computers 110, 210, 310 and the VZ200 work in BASIC exclusively
using the interpretation method. If you want to use directly executable machine code,
you must have it generated using an assembler or enter it directly.

- 37 -

First of all, the main tool of an interpreter is comparison. An entered program line of
a BASIC program is checked character by character and searched for BASIC
keywords such as IF, THEN, FOR, NEXT, GOTO, etc. Each keyword found is
replaced with a unique hexadecimal digit called a TOKEN (e.g. CLS = 84H, IF =
8FH, GOSUB = 91H, CLOAD = B9H). The program line treated in this way is then
transferred to the program table.

This function takes place when the program is entered and relieves the execution
control of this laborious and time-consuming work.

At the time of execution, the execution control addresses each line again and checks
for the presence of these TOKENs. For almost every TOKEN, the BASIC interpreter
has its own execution routine, which is called when the corresponding TOKEN is
found to execute the function hidden behind it.

These routines for command and command execution then first carry out a further
formal (syntactic) check:

● is the number of parameters correct?
● were the correct data types used?
● Are the commas in the right place?
● Are parameters enclosed in parentheses if necessary? etc.

With a compiler, these functions would all be eliminated at execution time because
they already take place during compilation.

With LASER, the execution control is called when a command or program line
without a line number was entered or after a RUN command was recognized.

With a RUN command, a complete BASIC program stored in the Programs table is
executed.

Execution control starts at address 1D1EH and ends at address 1D77H. The entry
occurs at address 1D5AH.

- 38 -

The following steps are carried out when a program line is executed:

1. Load the first character of the current line from the program table.
Once the end of the program table has been reached, you return to the input
routine.

2. If the tracer is switched on (TRON active), the line number is first displayed on
the screen (<nn>).

3. If the character is not a TOKEN, go to step 7.

4. If the character > ’BBH’, it must be exactly “FAH? (MID$), otherwise it is not
allowed at the beginning of the line and a SYNTAX ERROR will be generated.

5. If the character is less than 'BCH', it is used as an index for a jump table of the
execution routines.

6. The corresponding execution routine is called and after execution it jumps
back to step 1.

7. If the character is not a TOKEN, it must be a value assignment.
The specified variable is determined; if it does not exist, it is added to the
variable table,

8. The value expression is parsed and the value is assigned to the variable.

9. Back to step 1

Annotation:

For LASER, the TRON and TROFF commands are only available in EXTENDED
BASIC. However, you can replace these with POKE commands in normal BASIC.

POKE 31003,1 = TRON
POKE 31003,0 = TROFF

- 39 -

The execution routine begins by loading the first character of the line to be
processed.

The address 1D1EH is then packed onto the stack. This is the address to which all
execution routines should return after successful completion of their operations.

If the character read is not a TOKEN (< 80H), it should be a value assignment, e.g.
B=5.

The routine for performing value assignments starts at 1F21H. This is the same
address that you would end up at if the TOKEN 8CH had stood for LET before the
assignment. For this reason you can also leave out the LET.

The allocation routine expects that the address pointer to the line to be processed is
directly in front of the variable name. The variable table is searched for an entry with
the same name; if not present, the name is added to the table. There must be an
equal sign after the variable name and then the value expression. The value
expression is parsed in the routine starting from 2337H. The determined value is
then converted into the correct type of the specified variable and saved at the
variable address.

If a TOKEN is found at the beginning of the line, it is checked whether it is a valid
TOKEN. Only TOKENs 80H to BBH are valid at the beginning of an instruction. The
TOKEN BCH through F9H can only be used as part of a value assignment or a
command sequence.

Example: 8FH (IF) ‘expression’ CAH (THEN) xxxx

The THEN TOKEN may not appear at the beginning of a line, but only after an
IF statement.

The only exception to this is the MID$ TOKEN 'FAH', which cannot easily be used
with the LASER because it uses one of the unused RAM expansion outputs in the
communication area. However, new, self-made BASIC commands can be cleverly
connected to the interpreter, e.g. a SORT or similar.

A TOKEN between 80H and BBH is used as an index into the jump table starting at
address 1822H, in which the start address of the execution routine is stored for each
valid instruction. The program is then continued at the address taken from there.

- 40 -

The values behind the TOKENs up to the end of the statement are the parameters
required for the respective execution routine. Each execution routine knows the
expected parameters and checks them for completeness and correct format. The
end of a command's parameters must also match the end of the statement.

After an execution routine completes, control returns to execution control
handed over (1D1EH). There it is first checked whether the end of the instruction has
been reached. The end of a statement is either a line end identifier 00H or a
statement separator ':'. When a statement separator is reached, the following
statement on the same line is interpreted and executed in the same way.

When the end of the line is reached, the next line in the program table is addressed
and passed to execution control.

However, with a system command or a direct command there is no “next” line; these
instructions are not executed from the program table, but directly from the
input/output buffer. A program end 00H-00H is simulated at the end of the buffer. In
addition, a line number of FFH-FFH or 65535 is added to identify such an instruction.

The RUN command tells the execution control that it has to take its instructions from
the Programs table.

When the end of a BASIC program is reached, be it with or without an END
statement, the END execution routine jumps back to the input routine.

An error detected during execution causes an appropriate error message to be
output and also a return to the input routine.

The execution routines

The actual functions of the individual commands are carried out in the execution
routines. There is a separate execution routine for each system command (CLOAD,
CSAVE, CLEAR, RUN, etc.) and for each BASIC command (FOR; IF, GOSUB,
GOTO, etc.). In addition, execution routines for all mathematical functions such as
SIN, COS, ATN, LOG etc. are available.

- 41 -

These execution routines further analyze the instruction from the point where
execution control detected a TOKEN. The statement is examined from left to right for
special characters, such as commas or brackets or TOKENs. Each instruction has its
own special parameter structure, so that a further formal check takes place here first.

In many cases, the execution routines also fulfill control functions by calling a whole
series of internal subroutines to fulfill their function, which they share with other
execution routines.

A good example of such an internal sub-routine is the expression analysis at 2337H.
This routine is called by all execution routines that allow expressions in their
parameters. Examples of such execution routines are those for processing IF, FOR
and PRINT.

Expression analysis calls additional internal subroutines, such as 260DH, to
manipulate variables within an expression. Since there are also indexed variables
that allow an expression as indexing, this routine may have to call the expression
analysis subroutine from which it was just called. This is called recursion.

An example of a value assignment that causes such a recursion:

ST = E(BC/CD(3,F))/D(DE-1)

Other internal subroutines are:

● Prefix to the end of the statement (1F05H)
● Find a FOR or GOSUB data block on the stack (1936H)
● write an entry to the string buffer (2865H)
● and many others.

Mixing results are usually stored in a work area of the coaunication area (X register =
791DH).

All execution routines (except MID$) are started with the following register contents!

A - the character following the TOKEN
Flags - CARRY = numeric char

ZERO = end of statement ':' or end of line X'00'
BC - Start address of the execution routine
DE - Address in jump table entry + 1 for the TOKEN
HL - Address of the character located in A in the instruction

- 42 -

A table of all system commands and BASIC commands with the address of their
execution routines is included in Chapter 9.

Arithmetic and mathematical functions

First, some considerations of the computational capabilities of the Z80 and the
BASIC interpreter.

The Z80 only supports 8-bit and 16-bit additions and subtractions internally. It does
not perform any multiplication or division and certainly no floating-point arithmetic.

The Z80's register set for performing arithmetic consists of seven 16-bit register pairs
(AF, BC, DE, HL, IX, IY, SP}, plus four shadow register pairs (AF', BC', DE', HL'),
however, last four pairs can only be used for temporary storage.

All arithmetic operations must fundamentally take place between these registers.
Register memory operations are only possible in a few exceptional cases via indirect
addressing.

The operations of the registers among themselves are also limited. Especially in
16-bit arithmetic, only very specific register constellations are permitted.

The BASIC interpreter supports all arithmetic operations, be it addition, subtraction,
multiplication or division, for three different types of variables:

● Integer variable (Integer)
● Single precision float variable (Single)
● Double precision float variable (Double)

This is achieved through internal subroutines that replace the Z80's missing
hardware capabilities via software.

However, due to the complexity of the software, mixed operations are not supported,
i.e. only variables of the same type can be linked together. Using unequal types of
variables in an operation would lead to unpredictable results, creating a new type
with random value.

- 43 -

The three variable types that the BASIC interpreter supports have the following
format:

Integer 16 bit 1 bit sign, 15 bits data

Single 32 bit 8 bits Exponent, 24 bits mantissa with sign

Double 56 bit 8 bits Exponent, 48 bits mantissa with sign

This shows that the hardware registers are not sufficient to hold, let alone process,
two single or double precision variables.

For this reason, two work areas were set up in the communications area, which are
used as intermediate and working memory (register replacement).

These are work area 1 (referred to as the X register), which is the area
791DH to 7924H and the work area 2 (Y register), which extends from 7927H to
792ẸH.

These two workspaces have the following format:

Address Integer Single Double

791D / 7927 —- —- LSB
791E / 7928 —- —- NSB
791F / 7929 —- —- NSB
7920 / 792A —- —- NSB
7921 / 792B LSB LSB NSB
7922 / 792C MSB NSB NSB
7923 / 792D —- MSB MSB
7924 / 792E —- EXP EXP

(The addresses refer to work area 1; however, work area 2 is structured in the same
way)

LSB = Least Significant Byte
NSB = Next Significant Byte
MSB = Most Significant Byte
EXP = Exponent

- 44 -

The various arithmetic operations for the three variable types have the following
register/workspace assignment:

Integer Variables:

1.Operand 2.0perand Operation Result Execution
routine

HL + DE Addition HL 0BD2H
HL - DE Subtraction HL 0BC7H
HL * DE Multiplication HL 0BF2H
DE / HL Division ARB1 2490H

Single precision Variables

1.Operand 2.0perand Operation Result Execution
routine

ARB1 + BCDE Addition ARB1 0716H
ARB1 - BCDE Subtraction ARB1 0713H
ARB1 * BCDE Multiplication ARB1 0847H
ARB1 / BCDE Division ARB1 08A2H

The two register pairs BC and DE are used to record the 2nd operand in single
precision operations.

Double precision Variables

1.Operand 2.0perand Operation Result Execution
routine

ARB1 + ARB2 Addition ARB1 0C77H
ARB1 - ARB2 Subtraction ARB1 0C70H
ARB1 * ARB2 Multiplication ARB1 0DA1H
ARB1 / ARB2 Division ARB1 0DE5H

Because mixed operations are not allowed, integer values can only be processed
with other integer values. The same applies, of course, to single or double precision
values.

Since four different arithmetic operations are possible for each type (+ - * /) and there
are three different data types, there are twelve different arithmetic routines. There
are also 3 routines for type-dependent arithmetic comparison operations.

- 45 -

An address table of the 15 routines is contained in the ROM starting at address
18ABH.

Each of these routines knows the type of values to be processed and expects them
to be available in the correct registers or areas.

However, this does not apply to the mathematical routines, as these only work with
one input value, which must always be provided in work area 1 (X register).

A problem now arises for the mathematical routines. You need to call arithmetic
operations internally, but in workspace 1 you cannot see the type of argument
provided there. For this reason, another byte was allocated in the communication
area (78AFH), which provides information about the type of value stored in work
area 1. This byte is also called the Type Flag.

One of the four following codes is entered there!

Code Type of data
02 Integer
03 Text (string)
04 Single
08 Double

The type code corresponds exactly to the length of the value stored in workspace 1
for the specific data type.

With a few exceptions, the mathematical routines allow all different data types (see
detailed description of the routines).

Internal representation of the data

To better understand what was said above, it will be explained here how the data is
actually displayed internally in the LASER.

Integer variables are represented in 16 bits, with bit 15 containing the sign and bits 0
- 14 containing the value. The largest positive value that can be represented is
32767 (decimal) or 7FFF (hexadecinmal). The smallest negative value that can be
represented is -32768 (decimal) or 8000 (hexadecinal).

- 46 -

Bit 15 = 0 positive number
15 = 1 negative number

Positive range: 0000 .. 7FFF (hex) == 0 .. 32767 (dec)
Negative range: FFFF .. 8000 (hex) == -1 .. -32768 (dec)

Note that negative values are represented in their complement.

Floating point variables are processed by BASIC in two different types:

● Single precision variable
● Double precision variable

These Types have an eight-byte signed exponent.

For single precision variables, the mantissa has a signed value in 24 bits (3 bytes)
and for double precision variables, it has a signed value in 56 bits (7 bytes).

Both types have the same format, they only differ in the mantissa length.

Bit 31 Sign of the exponent
1 = positive (the decimal point must go to the right)
0 = negative (the decimal point must go to the left)

Bits 30..24 Value of the exponent = number of places to move
the decimal point.

Bit 23 Sign of the mantissa
0 = positive
1 = negative

Bits 22..0 Value of the mantissa, left-bound (normalized),
i.e. the most significant bit is in bit position 23.
Negative values are displayed like positive ones,
with the only difference that bit 23 is set.

The numbers are represented in the form

Number = mantissa * 2^EXP with: 0.5 <= mantissa < 1

- 47 -

The mantissa is 24 or 56 bits long, although the first bit is not saved because it is
always 1. The sign of the mantissa is put in its place.

The exponent is always saved with an offset of 128 (= 80H), which results in the sign
of the exponent in the most significant bit position.

Examples: 0.5 = 0.5 * 2 ^ 0 ⇒ Exp = 80, M = 00 00 00
-4 = -0.5 * 2 ^ 3⇒ Exp = 83, M = 80 00 00
-0.25 = -0.5 * 2 ^ -1⇒ Exp = 7F, M = 80 00 00

The largest number that can be represented with all its digits in single precision is
2^24-1 or 8388607 (dec.) or 7FFFFF (hex.). At double precision with the larger
mantissa, the largest number that can be represented accurately is 2^56-1 or
3.578*10^16 (dec.) or 7FFFFFFFFFFFFF (hex).

However, these values, 8388607 or 3.578*10^16, do not represent the largest value
that can be used for calculations, but only the largest that can be represented
without loss of precision. This is because the exponent for both types can take
values between 2^-128 and 2^127. Theoretically, the comma (in binary
representation) can be shifted 127 places to the right or 128 places to the left, even
though there are only 24 or 56 bits in the mantissa.

Depending on the type of data and the calculation, this is usually sufficient. The only
thing that matters is the number of valid digits in a value.

Annotation:

With the LASER 110, 210, 310 and the VZ200 it is not so easy to work with variables
of double precision. In the basic version of the BASIC interpreter you can only
choose between single precision variables and integer variables.

● Variable names without addition = single precision

● Variable names with the suffix '%' = integer variable

However, there is a little trick in which you can define very specific variable names
with double precision using a POKE XXXX;8 in the type table of the communication
area (from 7901H).

- 48 -

Input/output driver

Drivers have the task of creating an interface between the logical intent of an
application (a program) and the physical conditions of a special input/output device.

Here’s an example!
A program wants to output a very specific character, e.g. the letter 'A', to the
cassette.
This character is provided in the ASCII code in A register of the Z80 and the driver is
called.
The driver takes the character and transmits it bit by bit serially to the cassette output
(bit 1.2 of the address 6800H) in the pulse sequence determined by the recording
method.

On all LASER computers there are drivers for the keyboard, the screen, a parallel
printer and the cassette.

Keyboard and printer drivers are addressed via a special device control block
(Device Control Block = DCB) on the 7815H and 7825H, respectively. There is also a
fuselage DCB on the 781DH for the screen, but it is not used by the LASER except
for cursor management.

The DCBs hold counters and pointers for the specific device, such as the paper size
and line counter for the printer or the cursor position for the screen. The driver
addresses can also be found there.

The DCBs are set up in the communication area during system initialization and filled
with standard values.

A driver is called for each character to be transmitted. Drivers do not recognize
records or files, they cannot block or unblock characters. Such functions must be
carried out by the calling program itself. In BASIC interpreters, for example, the
routines for PRINT and INPUT do this.

When writing to the cassette, the PRINT command first creates a header of 255 *
80H and 5 * FEH, the data identifier F2H and the file name. Each variable is then
transferred as an ASCII string. Commas separate the individual variables and a
carriage return character (CR) completes the transfer.

An INPUT command first looks for the header, checks data identifiers and file
names. All variables are then transferred to the input/output buffer one after the other
until a carriage return character (CR = 0DH) is detected.

- 49 -

Each individual variable is then converted back into the correct format and
transferred to the variable table.

The Keyboard Driver starts at address 2EF4H and extends to address 3014H,
including an ECHO routine that displays the entered characters directly on the
screen. There is also a routine from 0507H that handles the actuation of several
keys at the same time, the so-called 'ROLLOVER'.

The keyboard driver can be called directly from the device control block (DCB) with
CALL 2BH if a single character is to be fetched from the keyboard. This is what the
routine of the BASIC command INKEY$ does, for example. With this type of query,
however, no ECHO output is carried out on the screen.

However, the keyboard query is also integrated in the interrupt service routine (see
Display Driver description). This type of query is mainly used when a whole line is to
be read in via the screen editor at 3E3H and the entered text is to be displayed on
the screen.

The Display Driver extends from 3039H to 342FH and consists of various
subroutines.

A special problem needs to be taken into account here. The VIDEO RAM is
accessed by two different blocks. On the one hand, the image generator constantly
scans the VIDEO RAM and transfers the characters contained there to the screen;
on the other hand, the Z80 has to write the information to be displayed into the
VIDEO RAM. If this happens unsynchronized next to each other, you will get an
unsightly flickering screen.

This is remedied by outputting to the VIDEO RAM only during the screen's blank
phase. This process is controlled and synchronized via the vertical synchronization
signal of the image generator. This is used to generate an interrupt. Screen output is
first buffered in a special buffer from 7AAFH and only transferred to the VIDEO RAM
in the interrupt service routine, i.e. during the blank phase of the screen.

The interrupt service routine is located at 2EB8H. In addition to the previously
described buffered screen output (via 3F7BH and 30E8H), it also provides additional
information.

- 50 -

● the flashing cursor display (2EDCH),
● the keyboard query (2EFDH) and
● the ECHO output to the screen (301BH) with a beep sound (3430H)

The interrupt occurs every 20 milliseconds in the PAL system. Before executing the
above functions, a jump is made via the RAM expansion output 787DH, a good
opportunity to work with the interrupt yourself, e.g. to implement a software clock.

To manage the screen, there is a table at the end of the BASIC communication area
(from address 7AD7H) that provides information about the status of each individual
line in 16 1-byte entries.

80H - Line is a single line of 32 characters
81H - Line is the first of a double line of 64 characters
00H - Line is second of a double line

This table in conjunction with two status flags at 7838H and 7839H are the basis of
the screen editor at 03E3H.

The Printer Driver starts at address 058DH and continues at 3AB6H. This is the
process when a normal ASCII character is to be output and the driver is called via
the DCB.

A special type of output is the COPY command (from 3912H), which is used to print
out the entire screen content. If you have a "Seikosha GP100" printer or similar
connected, inverted characters (setting table from 39B4H), block graphics and even
images of high-resolution graphics can also be printed out, with the colors replaced
by different shades of gray.

A "Seikosha GP 100" compatible printer must meet the following conditions:

● Switching code text => graphics = 08H
● Switching code graphics => text = 0FH
● Single needle control for 7 needles

- 51 -

The Cassette Driver spans from 34A9H to 389CH and consists of many individual
routines that are called depending on whether there is a cassette input or output.

The cassette recordings have the following format:

1. BASIC and machine programs

255 x 80H - Synchronization bytes
5 x FEH - Synchronization bytes
1 byte - Program Type

00 = BASIC
01 = machine program

max 15 bytes - Program name
00H - End identifier for name field

2 bytes - Program start address
2 bytes - Program end address + 1
n bytes - Program text/code
2 bytes - Checksum

20 x 00H - End identifier

2. Data files (from BASIC programs with PRINT#)

255 x 80H - Synchronization bytes
5 x FEH - Synchronization bytes

02H - Identifier for a data file
max 15 bytes - Program name

00H - End identifier for name field
n bytes - String variables, separated by

comma
0DH - End identifier (Carriage Return)

The cassette recording takes place bit serially in the following signal format:

Bit 0
555 us 555 us 555 us

Sync Pulse

Bit 1
555 us 555 us 555 us

Sync Pulse

- 52 -

First, a synchronization pulse lasting 555 microseconds is issued. A binary zero is
followed by a long pulse lasting a total of 1110 microseconds; a binary one is
followed by two pulses of 555 microseconds each. This results in a total pulse length
for a bit recording of 1665 microseconds and corresponds to a recording rate of 600
bits/sec. (Baud).

The messages on the last screen line generated by the cassette driver routine can
be suppressed if necessary. You can do this via the address 784CH.

784CH = 0 Messages are displayed
784CH = 1 Messages are not displayed

- 53 -

- 54 -

9. Addresses and tables of the BASIC interpreter

0000H
Internal operating system (ROM)

4000H
free or occupied by DOS

6000H
free

6800H
Input/output area

7000H
Screen memory

7800H
BASIC communication area

(78A4H) Program table (PST)

(78F9H) Variable table-VLT simple variable

(78FBH) Indexed variables

(78FDH)
Free storage

(78E8H) BASIC - Stack

(78A0H) String - range

(78B1H) End of memory

nnnn = absolute location of the area in memory
(nnnn) = address pointer in communication area

- 55 -

Internal tables

The lists and tables that are permanently located in the ROM of the operating system
are referred to as 'internal tables'. This also means that the content and position of
these tables are fixed. They are used by the BASIC interpreter for syntactic
checking, expression analysis, data conversion and the execution of certain
commands (e.g. FOR, IF).

BASIC keyword table (1650H - 1821H)

This table contains all reserved words and characters of the BASIC interpreter, be
they statements or functions.

Each entry contains one word, with 7th bit = 1 in the first character of the entry.

During the input phase, a read line is compared character by character with this
table. If a text section of the line matches an entry, it is replaced by the so-called
TOKEN. A TOKEN is a 1-byte hexadecimal value that is formed from entry number
of the entry found. In addition, bit 7 is set.

Example:
CLS is the 5th entry in the table.
Since counting starts with 0, this results in an entry number of 4.
If bit 7 is switched on, this results in a TOKEN of 84H for CLS.
This means that every character string CLS in the program text is replaced by 84H,
with the line length being shortened by 2 bytes.

But this alone is not enough. The head is rarely at the point where a new byte begins
on the track. As a rule, it will start reading in the middle of a byte. However, since the
data is stored consecutively bit by bit without gaps, it is impossible to identify the
beginning of a byte. That is, first of all, a start of recording is found. One speaks here
of a synchronization of the head.

If you examine the table, you will notice that a number of keywords are not encoded
but consist of binary zeros. These are enclosed in parentheses and marked with an
asterisk in the list below. However, as long as these are not DOS commands, the
execution routines are mostly there.

In my opinion, the reason is to look for copyright in order to avoid too much similarity
to another computer. With EXTENDED BASIC many of these commands are made
available to the user again.

- 56 -

Keyword TOKEN Keyword TOKEN Keyword TOKEN
END 80H (NAME) A9H * OR D3H
FOR 81H (KILL) AAH * > D4H
RESET 82H (LSET) ABH * = D5H
SET 83H (RSET) ACH * < D6H
CLS 84H (SAVE) ADH * SGN D7H
(CMD) 85H * (SYSTEM) AEH * INT D8H
(RANDOM) 86H * LPRINT AFH ABS D9H
NEXT 87H (DEF) B0H * (FRE) DAH *
DATA 88H POKE B1H INP DBH
INPUT 89H PRINT B2H (POS) DCH *
DIM 8AH CONT B3H SQR DDH
READ 8BH LIST B4H RND DEH
LET 8CH LLIST B5H LOG DFH
GOTO 8DH (DELETE) B6H * EXP E0H
RUN 8EH (AUTO) B7H * COS E1H
IF 8FH CLEAR B8H SIN E2H
RESTORE 90H CLOAD B9H TAN E3H
GOSUB 91H CSAVE BAH ATN E4H
RETURN 92H NEW BBH PEEK E5H
REM 93H TAB(BCH (CVI) E6H *
STOP 94H TO BDH (CVS) E7H *
ELSE 95H (FN) BEH * (CVD) E8H *
COPY 96H USING BFH (EOF) E9H *
COLOR 97H (VARPTR) C0H * (LOC) EAH *
VERIFY 98H USR C1H (LOF) EBH *
(DEFINT) 99H * (ERL) C2H * (MKI$) ECH *
(DEFSNG) 9AH * (ERR) C3H * (MKS$) EDH *
(DEFDBL) 9BH * (STRING$) C4H * (MKD$) EEH *
CRUN 9CH (INSTR) C5H * (CINT) EFH *
MODE 9DH POINT C6H (CSNG) F0H *
SOUND 9EH (TIME$) C7H * (CDBL) F1H *
(RESUME) 9FH * (MEM) C8H * (FIX) F2H *
OUT A0H INKEY$ C9H LEN F3H
(ON) A1H * THEN CAH STR$ F4H
(OPEN) A2H * NOT CBH VAL F5H
(FIELD) A3H * STEP CCH ASC F6H
(GET) A4H * + CDH CHR$ F7H
(PUT) A5H * - CEH LEFT$ F8H
(CLOSE) A6H * CFH RIGHT$ F9H
(LOAD) A7H / D0H MID$ FAH

‘ FBH

- 57 -

Address tables of the execution routines

In ROM there are two different address tables for the execution routines. The first is
used by execution control when a BASIC statement is to be executed. It contains
addresses for the TOKEN execution routines 80H to BBH and is located in the
address range 1822H - 1899H. The first TOKEN of an instruction (Bit7=0) is used as
an index (0 - 59) for table access. The address of the execution routine is taken from
the table and called. If the statement does not begin with a TOKEN, it branches to
the value assignment routine (implicit LET).

The second address table from 1608H - 164FH contains addresses of routines for
BASIC functions that may only appear on the right side of a value assignment (after
the equal sign).

If a TOKEN is encountered in the range D7H to FAH during the expression analysis,
it is used as an index (0 - 35) for the second address table and the address of the
execution routine is taken from it.

No address table is required for the TOKEN BCH to D6H, as these are processed
directly by the other execution routines when they occur.

Address table of the BASIC instructions (1822H - 1899H)

TOKEN Keyword Address TOKEN Keyword Address

80 END 1DAE 9E SOUND 2BF5
81 FOR 1CA1 9F RESUME 1FAF
82 RESET 0138 A0 OUT 2AFB
83 SET 0135 A1 ON 1F6C
84 CLS 01C9 A2 OPEN 7979
85 CMD 7973 A3 FIELD 797C
86 RANDOM 01D3 A4 GET 797F
87 NEXT 22B6 A5 PUT 7982
88 DATA 1F05 A6 CLOSE 7985
89 INPUT 219A A7 LOAD 7988
8A DIM 2608 A8 MERGE 798B
8B READ 21EF A9 NAME 798E
8C LET 1F21 AA KILL 7991
8D GOTO 1EC2 AB LSET 7997
8E RUN 1EA3 AC RSET 799A
TOKEN Keyword Address TOKEN Keyword Address

- 58 -

8F IF 2039 AD SAVE 79A0
90 RESTORE 1D91 AE SYSTEM 0000
91 GOSUB 1EB1 AF LPRINT 2067
92 RETURN 1EDE B0 DEF 795B
93 REM 1F07 B1 POKE 2CB1
94 STOP 1DA9 B2 PRINT 206F
95 ELSE 1F07 B3 CONT 1DE4
96 COPY 3912 B4 LIST 2B2E
97 COLOR 389D B5 LLIST 2B29
98 VERIFY 3738 B6 DELETE 2BC6
99 DEFINT 1E03 B7 AUTO 2008
9A DEFSNG 1E06 B8 CLEAR 1E7A
9B DEFDBL 1E09 B9 CLOAD 3656
9C CRUN 372E BA CSAVE 34A9
9D MODE 2E63 BB NEW 1B49

Address table of the BASIC functions (1608H - 164FH)

TOKEN Keyword Address TOKEN Keyword Address
D7 SGN 098A E9 EOF 7961
D8 INT 0B37 EA LOC 7964
D9 ABS 0977 EB LOF 7967
DA FRE 27D4 EC MKI$ 796A
DB INP 2AEF ED MKS$ 796D
DC POS 27F5 EE MKD$ 7970
DD SQR 13E7 EF CINT 0A7F
DE RND 14C9 F0 CSNG 0AB1
DF LOG 0809 F1 CDBL 0ADB
E0 EXP 1439 F2 FIX 0B26
E1 COS 1541 F3 LEN 2A03
E2 SIN 1547 F4 STR$ 2836
E3 TAN 15A8 F5 VAL 2AC5
E4 ATN 15BD F6 ASC 2A0F
E5 PEEK 2CAA F7 CHR$ 2A1F
E6 CVI 7952 F8 LEFT$ 2A61
E7 CVS 7958 F9 RIGHT$ 2A91
E8 CVD 795E FA MID$ 2A9A

- 59 -

Ranking of arithmetic operations

The ranking of the various arithmetic operations in arithmetic expressions is also
determined using a table located in the address range 1B9AH to 18A0H.

This table contains numeric values for the various operators that determine
precedence.

During expression analysis, each operator/operand pair plus the rank value of the
preceding operator is placed on the stack. If an operator with a higher rank value
than the previous one is found, the operation is carried out immediately and the
resulting intermediate result is put on the stack.

Operator Function Rank Value
+ Addition 79
- Subtraction 79
* Multiplication 7C
/ Division 7C
[Exponentiation 7F
AND Logical AND 50
OR Logical OR 46

Arithmetic routines

For the three different types of numerical variables, the ROM at 18ABH-18C8H
contains three tables with the start addresses of the associated arithmetic routines.
These are used by expression analysis.

Function Integer Variables Single precision
Variables

Double precision
Variables

Addition 0BD2 0716 0C77

Subtraction 0BC7 0713 0C70

Multiplication 0BF2 0847 0DA1

Division 2490 08A2 0DE5

Comparison 0A39 0A0C 0A78

- 60 -

For completeness, the address of the routine for adding text variables (strings) is
298FH.

Data conversion (type matching)

To convert data into the various variable types, there is another table which,
depending on the target type, contains the addresses of the corresponding
conversion routines. These routines convert the value located in work area 1 (X
register) into the desired data type. They are primarily used by expression analysis
to be able to link values and intermediate results of different types.

The table is located at 18A1H-18AAH.

Conversion into Address
Text (string) variable 0AF4 *
Integer variable 0A7F
Single precision variable 0AB1
Double precision variable 0ADE

* For text variables, the specified routine does not contain any conversion, but only a
test as to whether the variable in work area 1 is really a text variable. If not, 'TYPE
MISMATCH ERROR' is displayed.

- 61 -

Error messages

There are two tables with error messages in the ROM area.

The first table is located at 18C9H-18F6H and only contains a two-character
abbreviation for each error message. It is a relic from another operational computer
of this operating system and is not used by the LASER computer.

The table used by the LASER 110, 210, 310 and the VZ200 is included
3CECH-3E28H and contains the error messages in written form.

The error messages are determined using an error number, which is used as an
index for table access.

Error number Error code Error text
00 NF NEXT WITHOUT FOR
02 SN SYNTAX ERROR
04 RG RET’N WITHOUT GOSUB
06 OD OUT OF DATA
08 FC FUNCTION CODE ERROR
0A OV OVERFLOW
0C OM OUT OF MEMORY
0E UL UNDEF’D STATEMENT
10 BS BAD SUBSCRIPT
12 DD REDIM’D ARRAY
14 0/ DIVISION BY ZERO
16 ID ILLEGAL DIRECT
18 TM TYPE MISMATCH
1A OS OUT OF SPACE
1C LS STRING TOO LONG
1E ST FORMULA TOO COMPLEX
20 CN CAN’T CONTINUE
22 NR NO RESUME
24 RW RESUME WITHOUT ERROR
26 UE UNPRINTABLE ERROR
28 MO MISSING OPERAND
2A FD BAD FILE DATA
2C L3 DISK COMMAND ERROR

- 62 -

External tables

The data structures that are created and managed by the BASIC interpreter in the
RAM area are referred to as 'external tables'. The characteristic of external tables is
that their content can change and their location in the RAM area can also change.

For tables that change their location in memory, there are address pointers in the
BASIC communication area so that they can be found and addressed again at any
time.

The BASIC communication area (7800H - 7AE8H)

In the communication area, the BASIC interpreter creates and manages all the
necessary address pointers and management tables, which can change during
normal program processing or in which the user can also define or change their own
process variables.

Think of the communications area as the BASIC interpreter's notepad.

The following list contains a description of each individual byte in this area.

Some tables within the communication area are described in detail following this list.

The range 7800H to 7835H is pre-assigned from the ROM area during system
initialization.

7800 C3 96 1C JP 1C96H ; RST 8 - Vector
7803 C3 78 1D JP 1D78H ; RST 10 - Vector
7806 C3 90 1C JP 1C90H ; RST 18 - Vector
7809 C3 D9 25 JP 25D9H ; RST 20 - Vector
780C C9 00 00 RET ; RST 28 - Vector
780F C9 00 00 RET ; RST 30 - Vector
7812 FB C9 00 EI ; RET ; RST 38 - Vector

- 63 -

; Keyboard Device Control Block (DCB)
7815 01 ; DCB Identifier
7816 F4 2E ; Driver Address
7818 00 ; Background Flag (0-green,1-black)
7819 00 ; act. background
781A 00
781B 4B 49 ‘KI’

; Screen Device Control Block (DCB) (unused in the LASER 110-310)
781D 00 ; DCB Identifier (deleted)
781E 00 00 ; Pointer to Programs start address used by CLOAD
7820 00 70 ; Cursor Address
7822 00
7823 00 00 ; Checksum for cassette input/output

; Printer Device Control Block (DCB)
7825 06 ; DCB Identifier
7826 8D 05 ; Driver Address
7828 43 ; Lines per Page + 1
7829 00 ; Line counter
782A 00
782B 50 52 ‘PR’

782D C3 00 50 JP 5000H ; unused
7830 C7 00 00 RST 0 ; unused

7833 3E 00 LD A,0 ; with unknown DCB identifier A=0
7835 C9 RET

7836 ; Buffer B1 for 1st key code with multiple key presses at the same time
7837 ; Buffer B2 for 2nd key code with multiple key presses at the same time

7838 ; FLAG 1
; Bit 7 - CONTROL flag
; Bit 6 - REPEAT flag
; Bit 5 - WAIT flag
; Bit 4 - B2 Status flag
; Bit 3 - B1 Status flag
; Bit 2 - FUNCTION flag
; Bit 1 - INVERSE flag
; Bit 0 - SHIFT flag

- 64 -

7839 ; FLAG 2
; Bit 7 - unused
; Bit 6 - CRUN flag
; Bit 5 - Ini flag for buffered output
; Bit 4 - Flag for INPUT statement
; Bit 3 - VERIFY flag
; Bit 2 - BREAK flag
; Bit 1 - BUZZER flag
; Bit 0 - Carriage Return flag

783A ; Time counter

783B ; INPUT/OUTPUT Latch (shadow register)

783C ; Copy of Character for cursor display

783D-7840 ; unused

7841 ; Cursor Blink Counter

7842-7843 ; Temporary storage for keyboard scan (row/column)

7844-7845 ; Temporary storage for keyboard scan (Matrix address)

7846 ; Color code

7847-784B ; unused

784C ; Output flag for message output for cassettes I/0
; (if > 0 - messages are suppressed)

784D-787C ; unused

787D C9 00 00 RET ; RAM expansion output of the interrupt service routine

The 7880H-78A5H area is filled from the ROM area during initialization

Subprogram for division:
7880 D6 00 SUB 0 ; Subtraction Z2 - Z1
7882 6F LD L,A ; is modified before each call.
7883 7C LD A,H
7884 DE 00 SBC A,0
7886 67 LD H,A
7887 78 LD A,B

- 65 -

7888 DE 00 SBC A,0
788A 47 LD B,A
788B 3E 00 LD A,0
788D C9 RET

788E 4A 1E ; USR starting address (initialized with FUNCTION CODE error)

7890 40 E6 4D ; Multiplier for RND

; Subprogram for INP
7893 DB 00 IN A, (0)
7895 C9 RET

; Subprogram for OUT
7896 D3 00 OUT (0),A
7898 C9 RET

7899 00 ; INKEY$ cache

789A 00 ; last error code for ERR

789B 00 ; Printer position on the line

789C 00 ; Selected Out Device flag (0=Screen, 1=Printer, 80=cassette)

789D 40 ; BASIC Line length on screen (default is 64)

789E 30 ; last Tab position (default is 48)

789F 00 ; unused

78A0 47 7B ; Starting address of the string area (defaut 7B47)

78A2 FE FF ; Current BASIC Line Number

78A4 E9 7A ; Start address of the program text (encoded data? or…)

78A6-78A7 ; Column pointer for output image (??)

78A7-78A8 ; Pointer to input/output buffer (from 79EBH)

78A9 ; Input flag (0 = cassette) ??

78AA-78AD ; last random number

- 66 -

78AE ; Flag for DIM instruction

78AF ; Type of the value in the X register
; 02 - Integer
; 03 - String
; 04 - SIngle
; 08 - Double

78B0 ; Flag for intermediate code generation for DATA
; operation code during expression analysis

78B1-78B2 ; End address of the BASIC memory area

78B3-78B4 ; Pointer to string area

78B5-78D2 ; String buffer (10 x 3 bytes)
; (1 byte - length, 2 bytes - address in string area)

78D3-78D5 ; Current string variable

78D6-78D7 ; Pointer to the last free byte in the string area

78D8-78D9 ; General address buffer format flag for string
; output of a number

78DA-78DB ; DATA - line number

78DC ; Indexing blocking flag

78DD ; RESUME/RETURN Flag

78DE ; Intermediate buffer for PRINT USING
; DATA flag for INPUT etc.

78DF-78E0 ; general address memory
; e.g. program continuation at NEW
; Run variable for FOR/NEXT
; Address d. Variable table at LET

78E1 ; AUTO input - flag (0 - no AUTO)

78E2-78E3 ; AUTO - next line number

78E4-78E5 ; AUTO - increment value

- 67 -

78E6-78E7 ; Address of the current BASIC line (FFFF = direct command)

78E8-78E9 ; Pointer to the BASIC stack

78EA-78EB ; Number of the BASIC line in which the last error occurred

78EC-78ED ; Number of the BASIC line in which the last error occurred
; (- Option for LIST)

78EE-78EF ; Address of the BASIC line where the error occurred

78F0-78F1 ; Address of an error handling routine (ON ERROR)

78F2 ; Error - Flag (Error=255, RESUME=0)

78F3-78F4 ; Address of the decimal point in the print buffer

78F5-78F6 ; BASIC Line number where the last break occurred
; (END, STOP, BREAK)

78F7-78F8 ; Address of the BASIC line where the last break occurred

78F9-78FA ; Programa end address
; Start of the variable table

78FB-78FC ; End address of the 1st part of the variable table
; Start of the arrays table (2nd part)

78FD-78FE ; Starting address of free memory
; End of arrays table

78FF-7900 ; Pointer to DATA line

; Table of types for every variable

7901 ; A

7902 ; B

7903 ; C

7904 ; D

- 68 -

7905 ; E

7906 ; F

7907 ; G

7908 ; H

7909 ; I

790A ; J

790B ; K

790C ; L

790D ; M

790E ; N

790F ; O

7910 ; P

7911 ; Q

7912 ; R

7913 ; S

7914 ; T

7915 ; U

7916 ; V

7917 ; W

7918 ; X

7919 ; Y

7920 ; Z

- 69 -

791B ; TRACE Flag (0 = TRON, AF = TROFF)

; X Register

791C ; 791C additional byte for right shift

INT STRING SINGLE DOUBLE
791D LSB
791E NSB
791F NSB
7920 NSB
7921 LSB ADR LSB LSB NSB
7922 MSB ADR MSB NSB NSB
7923 MSB MSB
7924 EXP EXP

7925 ; Buffer for arithmetic operations. e.g., sign

7926-792E ; Y Register (structured like X register)

792F ; unused

7930-7949 ; Printer buffer

794A-7951 ; Additional register for double precision
; multiplication and division

RAM vectors for floppy disk commands
initialized with JP 012DH (DISK COMMAND Error)

7952 ; CVI statement
7955 ; FN statement
7958 ; CVS statement
795B ; DEF statement
795E ; CVD statement
7961 ; EOF statement
7964 ; LOC statement
7967 ; LOF statement
796A ; MKI$ statement
796D ; MKS$ statement
7970 ; MKD$ statement
7973 ; CMD statement
7976 ; TIME$ statement
7979 ; OPEN statement

- 70 -

797C ; FIELD statement
797F ; GET statement
7982 ; PUT statement
7985 ; CLOSE statement
7988 ; LOAD statement
798B ; MERGE statement
798E ; NAME statement
7991 ; KILL statement
7994 ; & statement
7997 ; LSET statement
799A ; RSET statement
799D ; INSTR statement
79A0 ; SAVE statement
79A3 ; LINE statement

RAM expansion hooks
initialized with C9H-00H-00H (RET)

79A6 ; from ERROR routine
79A9 ; from USR routine
79AC ; start of BASIC loop
79AF-79B1 ; unused
79B2 ; from programm input
79B5 ; End of program input
79B8 ; End of program input
79BB ; from NEW and END
79BE ; Final query PRINT
79C1 ; Data output
79C4 ; Reading Keyboard
79C7 ; RUN execution
79CA ; Start of PRINT statement
79CD ; PRINT statement
79D0 ; PRINT statement
79D3 ; PRINT statement
79D6 ; INPUT statement
79D9 ; MID$ function
79DC ; INPUT statement
79DF ; READ + INPUT + LIST
79E2-79E4 ; unused

79E5 3A 00 2C ; I/O buffer header

- 71 -

79EB-7A9C ; Input/output buffer (178 bytes)

79F8 ; BASIC stack during initialization

7A9D-7AAD ; Program/file name - buffer for cassette input/output

7AAE ; Column display on screen

Zusätzlicher Ausgabepuffer für gepufferte
Bildschirmausgabe

7AAF ; Number of characters in the buffer

7AB0-7AB1 ; Buffer pointer

7AB2-7AD1 ; Buffer area

7AD2-7AD5 ; 4 bytes for draw Graphics, SOUND and cassette I/O

7AD6 ; Counter for the above buffer + length names for cassettes I/0

Flags for Editor lines on screen
(80=individual parts, 81=double line, 00=following line)

7AD7 ; Line 1
7AD8 ; Line 2
7AD9 ; Line 3
7ADA ; Line 4
7ADB ; Line 5
7ADC ; Line 6
7ADD ; Line 7
7ADE ; Line 8
7ADF ; LIne 9
7AE0 ; Line 10
7AE1 ; Line 11
7AE2 ; Line 12
7AE3 ; Line 13
7AE4 ; Line 14
7AE5 ; Line 15
7AE6 ; Line 16

7AE7 ; unused

7AE8 ; BASIC Programs start here

- 72 -

The string cache (783BH - 78D2H)

This is a table within the communication area. It is used by the BASIC interpreter to
temporarily store text variables (strings) that occur during string additions or some
PRINT operations.

The table consists of ten 3-byte entries that are stored one after the other. At the
beginning of the table, at 78B3H, there is an address pointer to the next free entry.
When the computer is initialized, it is set to the first entry in the table.

Each entry consists of a length byte and an address pointer to the String in String
area or in the program table. Entries are assigned from top to bottom and released
from bottom to top.

If the table overflows, the error message is displayed

FORMULA TOO COMPLEX

78B3 Pointer to the first
free entry

78B5 Length
Address LSB
Address MSB

78B8 Length
Address LSB
Address MSB

- 73 -

Table of types for every variable (7901H - 791A)

This table is used by the BASIC interpreter to determine the data type of a variable
(integer, string, single precision, double precision).

The location of this table is also fixed in the communication area, so no address
pointer is required for addressing. The content is changeable; in normal BASIC with
the help of the POKE command, in EXTENDED BASIC with the DEFxxx
declarations.

The table is 26 bytes long, which corresponds to the number of characters in the
English alphabet. There is one byte for each letter from 'A' to 'Z'. The first letter of a
variable name is used as an index for table access. Each entry contains a code that
provides information about the coresponding variable type:

02 - Integer variable
03 - Text variable (string)
04 - Single precision variable
08 - Double precision variable

When the system is initialized, all entries are marked 04, i.e. as a variable
marked with simple precision.

If a variable name already contains a type identifier (e.g. A$ or B1%), this has priority
over a different table entry.

Address Letter Type at initialization
7901 A 04
7902 B 04
7903 C 04
7904 D 04
7905 E 04
7906 F 04
7907 G 04
7908 H 04
7909 I 04
790A J 04
790B K 04

- 74 -

790C L 04
790D M 04
790E N 04
790F O 04
7910 P 04
7911 Q 04
7912 R 04
7913 S 04
7914 T 04
7915 U 04
7916 V 04
7917 W 04
7918 X 04
7919 Y 04
791A Z 04

Screen Row Status - Table (7AD7H - 7AE6H)

At the end of the communication area there is a 16-byte table that is required by the
screen editor for line management. It contains a 1-byte entry for each of the 16
screen lines with the following content:

80 - this line is a single line of 32 characters.
81 - this line is the first of a double line of 64 characters
00 - this line is the second of a double line of 64 characters.

Programs data (Program Statement Table = PST)

A BASIC program entered or read from a cassette or diskette is stored with all of its
instruction lines in the program table. This usually lies directly after the
communication area.

Since the program table/area is located in the free memory area of the RAM and its
position can change if necessary, in the communication area there is a pointer to the
start of the table address at 78A4H and a pointer to the end of the table+1 at 78F9H.

- 75 -

Entered program lines are compressed by the input routine, i.e. BASIC keywords are
replaced by TOKENs and transferred to the program table. The individual program
lines are saved in ascending order by line number, regardless of the order in which
they were entered.

Each program line begins with an address pointer to the beginning of the next line.
This is followed by the line number in 2-byte integer (whole number) format. Behind
the line number is the actual line text, which ends with a 'Null' byte (00H). This ‘Null’
byte is also known as the “End of Statement” flag or EOS.

The end of the program is marked by two more 'Null' bytes after the last program
line.

(78A4) => 2-byte Next line Address

2-byte Line number

Line text

End of Line 00H

2-byte Next line Address

2-byte Line number

Line text

End of Line 00H

2-byte Next line Address

End of Line 00H

End of Program 00H-00H

(78F9) =>

- 76 -

The content of the program table should be represented using a simple example of
two program lines.

420 IF A = 25 THEN 500
430 A = A + 1

Pointer from previous line = 8132H

8132 45 81 ; Pointer to next line 8145H
8134 A4 01 ; Line number 01A4H (420 dec)
8136 8F ; IF (BASIC token)
8137 20 ; space
8138 41 ; A (variable name)
8139 20 ; space
813A D5 ; = (BASIC token)
813B 20 ; space
813C 32 35 ; 25 (number stored as char sequence)
813E 20 ; space
813F CA ; THEN (BASIC token)
8140 20 ; space
8141 35 30 30 ; 500 (number stored as char sequence)
8144 00 ; End of line (Null byte)
8145 53 81 ; Pointer to next line 8153H
8147 AE 01 ; Line number 01AEH (430 dec)
8149 41 ; A (variable name)
814A 20 ; space
814B D5 ; = (BASIC token)
814C 20 ; space
814D 41 ; A (variable name)
814E 20 ; space
814F CD ; + (BASIC token)
8150 20 ; space
8151 31 ; 1 (number stored as char sequence)
8152 00 ; End of line (Null byte)
8153 …

- 77 -

The variables - table

This table contains all variables that have been defined and assigned in a BASIC program.
The table is divided into two sections. Section 1 contains all simple variables, section 2
contains all dimensioned variables (arrays).

Three address pointers in the communication area provide information about the
location of the variable table in the RAM area.

78F9H - start address of the 1st section
(simple variable)

7BFBH - start address of the 2nd section
(arrays)

78FDH - end address of the variable table + 1
(= start of the free memory)

Program data

(78F9H) simple variables

(78FBH) dimensioned variables
(arrays)

(78FDH) free memory area

Regardless of which section a variable is defined in, the first three bytes of each
entry have the same format.
Byte 1 contains the type code of the variable (02, 03, 04 or 08), which corresponds
to the length of the value part. Bytes 2 and 3 contain the variable name in the order
'second letter/first letter'.

In the first case (simple variable) this is followed by the value in the sequence LSB
…NSB … MSB or in the case of text variables (strings) ‘length’ and ‘address’ to the
string in the string area or in the program table.

Entries in section 2 have another header entry after the 3-byte header, which
contains information about the size of the array.

- 78 -

The variables are entered into the variable table during the program execution,
whenever a value is assigned or a matrix is created using a DIM instruction.

New variables are simply added within the sections; there is no alphabetical sorting
order. Since entries are only made when a variable appears during program
execution, it may happen that the entire second section has to be moved in memory
to make room for a simple variable in the first section.

Example:
During the program process, the variables A, B and C(5) have already been defined
and entered into the variable table.

If a variable D now follows, the matrix C(5) must be moved in the second section of
the table so that D can be inserted at the end of the first section.

Matrices are stored in section 2 so that the indices are processed from left to right

Example: DIM(2,3) would be saved like this:

E(0,0)
E(1,0)
E(2,0)
…
E(0,3)
E(1,3)
E(2,3)

The position of each element in the matrix can be determined using the following
formula:

(Example of a three-dimensional matrix)

INDEX = (DRI * GMI + DMI) * GLI + DLI

where:
GMI = limit middle index + 1
GLI = limit left index + 1
DRI = defined right index
DMI = defined middle index
DLI = defined left index

- 79 -

Example: A matrix was defined with DIM A(5,4,4)

We are looking for the element A(3,1,2).

That makes: GMI = 5, GLI = 6
DRI = 2, DMI = 1, DLI = 3

INDEX = (2 * 5 + 1) * 6 + 3 = 69

A(3,1,2) is the 69th element of the matrix.

The routine for calculating the indices can be found in the ROM at address 2795H.

Examples of different entries in the variable table (assuming table starts at 8000H)

1. Simple variables

; Variable statement C% = 100
8000 02 ; Variable type 02 (Integer)
8001 00 43 ; C - variable name
8002 64 00 ; 0064H (100 dec) variable value

; Variable statement D = -4
8004 04 ; Variable type 04 (single precision)
8005 00 44 ; D - variable name
8007 00 00 80 81 ; -4 dec variable value (float format)

; Variable statement A$ = “XYZ”
800B 03 ; Variable type 03 (string)
800C 00 41 ; A - variable name
800E 03 ; 3 - string length
800F nn nn ; address of string characters

2. One-dimensional array

; Variable statement DIM A(20)
9000 04 ; Variable type 04 (single precision)
9001 00 41 ; A - variable name
9002 nn nn ; Length of array = Distance to the next array
9004 01 ; 1 - number of dimensions
9005 15 00 ; 0015H (21 dec) - max index + 1
9007 LSB NSB MSB EXP ; A(0) value
900B LSB NSB MSB EXP ; A(1) value
900F LSB NSB MSB EXP ; A(2) value
…
xxxx LSB NSB MSB EXP ; A(20) value
xxx+4 … ; next array variable data

- 80 -

3. Three-dimensional array

; Variable statement DIM A(4,5,9)
9000 04 ; Variable type 04 (single precision)
9001 00 41 ; A - variable name
9002 nn nn ; Length of array = Distance to the next array
9004 03 ; 3 - number of dimensions
9005 0A 00 ; 000AH (10 dec) - max right index + 1
9007 06 00 ; 0006H (6 dec) - max middle index + 1
9009 05 00 ; 0005H (5 dec) - max left index + 1
; 300 4-byte enries
900B LSB NSB MSB EXP ; A(0,0,0) value
900F LSB NSB MSB EXP ; A(1,0,0) value
9013 LSB NSB MSB EXP ; A(2,0,0) value
…
xxxx LSB NSB MSB EXP ; A(4,5,9) value
xxx+4 … ; next array variable data

- 81 -

- 82 -

10. The use of the BASIC Stack

Before the string area, at the end of the memory available for BASIC, is the stack
area of the BASIC interpreter.

Normally, the communication area serves the BASIC interpreter as a notepad for
temporarily storing work values and addresses. However, this does not always work
well, as some routines may call themselves internally (recursion) and the previously
saved intermediate results were overwritten. An indexed table would also help here,
but the BASIC interpreter uses the stack to do this.

In addition to the normal buffering of register contents and return addresses, the
stack is used by the BASIC interpreter primarily for three special functions:

● FOR/NEXT - loops

● GOSUB - Views

● Expression analysis

Stack usage in a FOR/NEXT loop

When a FOR statement occurs, all required variable addresses are packed onto the
stack in a FOR block. When a NEXT statement occurs, the FOR block with the
corresponding run variable is searched on the stack. This search routine is located at
1936H.

The stack is searched from back to front. If no suitable FOR block is found, the error
message is displayed

NEXT WITHOUT FOR

- 83 -

Format of a FOR block!

0000 81 ; FOR BASIC token
0001 LSB MBB ; Address of loop variable
0003 LSB NSB NSB MSB ; loop Step value
0007 LSB NSB NSB MSB ; loop Final value
000B LSB MSB ; Line number with FOR statement (binary)
000D LSB MSB ; Address of the first loop statement

Stack usage for a GOSUB instruction

When a G0SUB instruction occurs, a 7-byte block is written to the stack, which is
determined and evaluated by a subsequent RETURN.

Format of a GOSUB block:

0000 91 ; GOSUB BASIC token
0001 LSB MSB ; Line number with GOSUB instruction
0003 LSB MSB ; Address of the GOSUB instruction

; in the program table

- 84 -

11. Expression analysis

Expression analysis breaks down expressions into their individual elements and links
them according to the precedence of the operators within the expression.

Each expression is searched and the most significant operation is carried out first.
The resulting intermediate result is cached and the next higher operation in
expression is determined and executed. This continues until the expression has
been completely resolved.

An expression is searched from left to right. The search stops when an operator or
the end of the expression is found. The variable to the left of the found operator
(called the current variable), together
with the operator (an arithmetic shortcut symbol +, -, *, /, [) are called a set and
either

● if the rank of the operator was greater than the previous one, the set is written
to the stack as a record or

● if the rank of the operator was equal to or lower than the previous one, the
variable is linked to the previous sentence from the stack.
The previous sentence is removed from the stack and the result of the link is
considered a new “current variable”.

This is repeated until a new record created in this way has been pushed onto the
stack or there are no more values on the stack to link. In such a case the expression
was completely dissolved.

- 85 -

The variable/operator sets are written to the stack in the following format:

Rank value of the
preceding operator (for
the 1st entry =0)

XXXXXX
XXXXXX
XXXXXX

Continuation address
after a link (usually
2346H)

Value of the variable

Type code of the
variable

TOKEN of the operator after
the variable (0=+, 1=-, 2=*,
3=/, 4=[, 5=AND, 6=0R)

Address of the link
routine (for + - * / =
24086)

Rank value of the
operator

XXXXXX
XXXXXX
XXXXXX

Checking whether a link should take place or not is relatively easy. The rank value of
the operator in the last sentence is the last entry on the stack. It checks whether the
new operator's rank value is the same or smaller. If not, the new operator and current
variable are written to the stack as a new set. If yes, a link is performed,

In the case of a link, the last block is completely fetched from the stack and the link
routine specified there (normally at 2406H) is started. There the previous variable is
linked from the stack with the current variable according to the previous operator.
The result becomes the new current variable, which forms a new sentence with the
current operator.

After the link, the system jumps back to where it is checked again whether the new
record now formed is lower in rank or equal to that of another record on the stack.

- 86 -

If there is no set left on the stack or if the existing set has a lower rank value than the
current set, the newly formed set is written to the stack. Otherwise a link will take
place again.

The end of an instruction or the occurrence of a non-arithmetic TOKEN always
triggers a link.

The following example is intended to illustrate such an expression analysis in
individual steps:

Expression: A = B + C * D / E [5

The search begins with the first character to the right of the equal sign and initially
ends at the '+' sign.

'B' and '+' are written to the stack as the first sentence because there was no
sentence there yet for comparison or the 0 stored there during initialization suggests
a lower rank value.

The search continues and is interrupted again at '*'. The variable/operator set 'C *' is
written to the stack as the second set because the rank value of the operator '*' is
greater than that of the previous '+' on the stack.

The stack now looks like this:

00 XXXXXX
2346

Value of B
04 00 Set 1

2406
79 XXXXXX

2346
Value of C

04 02 Set 2
2406

7C XXXXXX

- 87 -

Another interruption occurs at the character '/'. Now a join needs to be performed because
the rank values of '*' (on the stack) and '/' (the new operator) are the same.

Set 2 is read from the stack and a branch is made to the link routine at 2406H. There the link
between 'C *' and the current variable 'D' is carried out, i.e. 'C' is multiplied by 'D'. This
results in a new current variable, the product of 'C * D'.

After the multiplication, the program continues at 2346H and the new variable/operator set 'C
* D /' is compared in rank value with set 1 on the stack. Since the rank value of '/' is greater
than that of the first set ('+'), 'C * D /' is pushed onto the stack as a 2nd set.

Now the stack has the following content:

00 XXXXXX
2346

Value of B
04 00 Set 1

2406
79 XXXXXX

2346
Result of C * D

04 03 Set 2
2406

7C XXXXXX

The analysis of the expression continues after the '/' and stops again when the
character '[' is reached. The current variable/operator set 'E[' is pushed onto the
stack as set 3 because the rank value of '[' is greater than that of the previous '/',

Now the stack has the following content:

Set 1 and Set 2
as before

2346
Value of E

04 04 Set 3
2406

7F XXXXXX

- 88 -

If you continue the search process, the end of the expression will be found after the
number '5'. As stated before, reaching the end of the statement triggers a shortcut.

Set 3 is popped from the stack and 'E [5' is calculated. The result is the new current
variable.

Since the current operator is still reaching the end of the expression, sentence 2 and
sentence 1 are also fetched from the stack one after the other and the calculated.

C * D / E [5

and last

B + C * D / E [5

is carried out.

If the program then continues at 2346H, there are no further elements of the
expression on the stack and the program returns to the calling routine.

The expression has been evaluated, the result is in work area 1 of the
communication area (X register) and is assigned from there to the variable 'A'.

- 89 -

- 90 -

12. Function derivatives

The BASIC interpreter supports 16 arithmetic functions, including the following 7
mathematical functions.

Sine (sin) (a)
Exponential function (e) (b)
Arc tangent (arctan) (c)
Natural logarithm (ln) (d)
Cosine (cos) (e)
Root function (x) (f)
Tangent (tan) (g)

The functions (e) to (g) can be calculated by the functions (a) to (d).

(1) cos 𝜑 = sin (𝜑 + 𝛱/2) 𝜑 in radians

(2) tan 𝜑 = sin 𝜑 / cos 𝜑 𝜑 in radians

(3) sqrt(x) = e ^ (½ ln x) e = Euler's number (2.71 }

If (3) is generalized, we get!

(4) x ^ y = e ^ (y ln x)

For internal calculation, the BASIC interpreter uses arithretic approximations of the
functions (a) to (d). All other functions are calculated using the approximations and
the functional relationships (1) to (4).

- 91 -

Sine

According to the laws of power series expansion, the sine can be expressed in a
series.

The BASIC interpreter approximates the sine up to the 5th term. The angle is given
in multiples of the circular arc (t).

If x is given in degrees, t must also be calculated.

To determine the sign for angles between 0 and 360 degrees (| 𝜑 | < 2𝛱) t is
calculated:

- 92 -

For larger angles, the number of integer multiples of a circular arc must be
subtracted and then the procedure must be followed as above.

The elements of the individual series members are accurate to four decimal places.

The maximum error of the approximation is < 0.0000035 (for |t| < 1/4). This means
that the overall result can be specified with an accuracy of 5 digits.

Exponential function

The BASIC interpreter calculates the exponential function e ^ x for all values in
range:

-88 < x < 88

The function approximation has two elements. One element is an integer exponent
with base 2, the second is a series expansion in 8 terms.

Here e^(-t) describes the difference between e^(x) and the next largest integer
multiple of log 2 e as an exponent.

The integer power to base 2 can be determined directly (binary calculation systems).

- 93 -

The power series for the second element is general:

The results found from (6.5) and (6.2) give e^x to 5 decimal places.

Arctangent

The approximation of the inverse tangent is based on the series expansion up to the
9th term.

If the output values are negative, the amount of x is calculated and the result is then
inverted. For values x > 1, the approximation for 1/x must be calculated.
The result is as follows!

For the values |x| < 1, the result results directly from the series development. The
coefficients 5-7 have been corrected so that the maximum error is 0.026 (in radians).

- 94 -

Natural logarithm

The approximation of the natural logarithm is calculated from three terms of the
associated series.

This results in:

This series converges for values x < 1. Therefore x must be transferred into these
areas by scaling.

The scaling factor is the next higher power of two with an integer exponent.

- 95 -

The constants of this formula are specified internally:

The scaled value 'A' can be calculated using the approximation (8.8).

The precision is given in four digits. This precision cannot be achieved for values of x
near 0 or for very large values.

- 96 -

13. Subroutines of the BASIC interpreter

The BASIC interpreter of the LASER computers 110, 210, 310 and the VZ200
consists of a large number of self-contained routines that are called by the execution
controller to perform specific functions. Many of these routines can also be used by
machine programs, thus simplifying program creation.

In this chapter, a number of these routines are described and their integration into
machine programs is shown using call examples.

When using each individual routine, it is important to have precise knowledge of the
input and output requirements. Where do the input parameters have to be provided,
in what data format do they have to be provided and where and how is the result
provided? These are just some of the questions that arise. It is also important to
know which registers will be changed by the routine to be called so that you can
save them in advance.

In this context, it should also be remembered again that when connecting a floppy
disk system, the register pair IY must not be changed.

Input/output routines

This section describes routines that deal with the interpreter's communication with its
environment,

How can characters be read from the keyboard, displayed on the screen or output to
a printer? How can you use the cassette interface from machine programs or output
sounds on the small built-in speaker?

- 97 -

Reading from the keyboard

Of course, you are free to evaluate the keyboard matrix yourself. There are also
ROM routines available that do this work for you.

CALL 2BH Evaluate keyboard

This routine evaluates the keyboard matrix once and transfers the result. When the
button is pressed, the ASCII code is determined and entered into the A register.

You will immediately jump back to the calling routine, regardless of whether a key
was pressed or not. If you want to read several characters one after the other, you
have to take care of debouncing yourself.

The register pair DE and the A register in which the result is transmitted is changed.

Example:
…
…
LD BC,600H ; Possibility of debouncing
CALL 60H ;
PUSH DE ; save DE on stack
CALL 2BH ; Read keyboard
OR A ; was the button pressed?
JP Z,NOKEY ; no, to the NOKEY branch

YES: POP DE ; restore DE from Stack
…
…

On return, the A register contains the ASCII code of the key pressed. If no key was
pressed, the A register is empty (00H). In the example above, the reading routine is
called and, depending on whether a key was pressed or not, either branches to the
'NOKEY' routine or the program continues with the 'YES' routine.

'CALL 2BH' is always useful if you want to see whether someone has rung the
doorbell, i.e. whether a button has been pressed, as you walk past while the program
is running.

- 98 -

CALL 49H Waiting for keyboard input

Here you will be asked to check whether a key was pressed or not. You don't get
control back until someone actually presses a key. Otherwise the routine
corresponds to the call 'CALL 2BH', which is also used internally.

Example:

The user should answer a question with 'Y' = Yes or 'N' = No.
The program waits for one of these two buttons to be pressed and branches
accordingly to the yes or no routine.

…
…

LOOP PUSH DE ; save DE on stack
CALL 49H ; Wait for Press Key
POP DE ; restore DE from Stack
CP ‘Y’ ; ‘Y’ key pressed?
JR Z,YES ; yes, to YES branch
CP ‘N’ ; ‘N’ key pressed?
JR NZ,LOOP ; no, keep waiting

NO … ; user pressed ‘N’
…

YES … ; user pressed ‘Y’
…
…

The characters read in with 'CALL 2BH' or 'CALL 49H' are not displayed on the
screen. You may have to do this yourself using one of the following output routines.

CALL 3E3H Reading a line

The routine at 3E3H serves you more comfortably than the previous two calls.

A complete line is read from the keyboard and displayed on the screen. The read
line is then made available in the input/output buffer of the communication area for
further processing.

- 99 -

The display on the screen begins at the current cursor position and the flashing
cursor character is automatically output.

An input line can contain a maximum of 64 characters and must be completed with
the <RETURN> key or the <CTRL-BREAK> keys.

Since this routine is used, among other things, to read BASIC programs, only the
characters that are valid in it are permitted (letters, numbers, special characters). If
you also want to read in block graphic characters or inverted characters, you must
enclose them in quotation marks when entering them. If incorrect characters are
entered, the text "SYNTAX ERROR" appears and the entry can be repeated.

In order for this routine to function, it is necessary that the interrupts are switched on
(EI = enable interrupts).

After return, the read text is in the input/output buffer starting at address 79E8H. The
register pair HL points to the byte before it (79E7H). The end of the text is marked by
a character 00H.

You can use the carry flag to determine whether the text was completed using
<RETURN> or <CTRL-BREAK>.

Carry = 0 completed with <RETURN>
Carry = 1 completed with <CTRL-BREAK>

All registers are changed by the routine.

Example:

A line of text must be read from the keyboard and transferred to the 'TEXT' field.
Register B should then contain the text length.

…
EI ; enable interrupts

LOOP CALL 3E3H ; Read Line
JR C,LOOP ; BREAK - read again
INC HL ; HL at the start of the buffer
LD DE,TEXT ; DE = address for text
LD B,0 ; Character count = 0

NEXT LD A,(HL) ; A - first char from buffer
OR A ; end of text?
JR Z,FINISH ; yes, to FINISH branch
LD (DE),A ; store char in Text memory
INC HL ; address in buffer + 1

- 100 -

INC DE ; address in Text Memory + 1
INC B ; character count + 1
JR NEXT ; repeat until 0 found

FINISH …
…

TEXT DEFS 64 ; Text memory

When finished, the line entered is in the 'TEXT' field. Register B contains the text
length.

Display characters on the screen

Three routines are suitable for displaying text on the screen. At 33AH
you can output a single character, with 28A7H and 2B75H a whole character string.

The screen memory for text display is 7000H-71FFH. You can also write something
directly in this area, but you should pay attention to screen synchronization; but this
possibility is also shown in an example.

CALL 33AH Display character on screen

The character provided in A register is displayed at the cursor position on the screen.
The cursor is advanced by one character.

The normal ASCII codes should be used in the A register, not the LASER-internal
screen codes.

In addition to the alphanumeric characters, control characters from the ASCII code
table are also recognized and the corresponding screen functions are executed.

08H or 18H Cursor one place to the left
09H or 19H Move cursor one place to the right
0AH Cursor down one line
0DH Cursor to the beginning of the next line
15H Insert a space (INSERT)
1BH Cursor up one line
1CH Cursor in the top left corner
1DH Cursor at the beginning of the line
1FH Clear screen
7FH Delete characters at the cursor position (RUBOUT)

- 101 -

Register contents are not changed, they are saved by the routine when jumping and
restored again when jumping back.

Example:

The letter 'A' should be displayed at the cursor position.

…
…
LD A,’A’ ; Load character
CALL 33AH ; and display on screen
…
…

CALL28A7H Output a line
or
CALL2B75H

If you have more than one character to output, you could call 33AH several times in
a loop. The routines in 28A7H and 2B75H do this work for you and output a
complete text to the screen with a single CALL call.

The start of the text address must be provided in the HL register pair, the end of the
text must be marked with 00H, with 28A7H 0DH is also recognized as the end of the
text,

The routine at 28A7H uses the string buffer in the communication area and the
BASIC string area at the end of the memory to prepare text. You should therefore
only use this routine if the communication and string areas are properly managed by
your machine program.

The routine at 2B75H performs direct output and is not subject to the restrictions
mentioned above. This routine offers you another level of comfort. By simply
switching a byte, you can redirect the output from the screen to a connected printer
or even to the tape recorder. This is byte 789CH in the communications area.

00H = screen
01H = printer
80H = cassette

But don't forget to put this byte back on the screen afterwards. Otherwise, later
system output may also migrate to the other device.

- 102 -

Example:

The screen should be deleted and the text “MY LASER IS AWESOME” should then
be displayed.

…
…
LD HL,TEXT ; address of text to display
CALL 2B75H ; and display on screen
…
…

TEXT DEFB 1FH ; clear screen control char
DEFM ‘MY LASER IS AWESOME’
DEFB 0 ; end of text

CALL 1C9H Clear the screen

You can easily get the screen clean with a CALL 1C9H. All that happens internally by
outputing the control characters 1DH (cursor to the beginning of the image) and 1FH
(clear screen) with two consecutive CALL 33AH.

Example:

…
…
CALL 1C9H ; clear screen
…
…

- 103 -

Direct output to screen memory

If you want to write directly to the screen memory (7000H-71FFH), you must not use
the normal ASCII character set. The character to be output must be provided in
LASER's internal encryption, but graphic characters of all colors can also be output
directly (see Chapter 5). The process is also suitable for output in high-resolution
graphics (7000H-77FFH). Please note that each byte contains information for four
pixels.

However, such output should be synchronized with the image generator, otherwise
the image quality will suffer (with frequent output, the image will be disturbed by
horizontal lines).

The RAM expansion output of the interrupt service routine on 787DH offers one
possibility for synchronization. There you can use a jump "C3 xx x' to your own
routine. After outputting your text in this routine, you return to the normal interrupt
service routine with a simple RETURN (C9H).

Another option, when the interrupt (DI) is switched off, is to query bit 7 in the
input/output area 6800H-6FFFH (see Chapter 4). This bit is directly connected to the
image generator's vertical sync signal.

Example:

The letter 'A' should be displayed at the beginning of the 3rd line of the screen.

…
DI ; disable interrupts
LD HL,7040H ; address of video RAM for text
LD B,’A’ ; load character to be output

WAIT LD A,(6800H) ; check vertical sync
OR A
JP P,WAIT ; wait if Bit 7 = 0
LD (HL),B ; output character
…
…

- 104 -

Output characters to the printer

ROM routines can be used from a machine program to output characters to a
connected printer. One of these options has already been discussed with the screen
output with the CALL 2B75H and switching the flag with 789CH. This allows entire
lines of text to be transferred to the printer. Another possibility is described below.

With a "Seikosha GP100" printer (see Chapter 8), block graphic characters and
inverted text characters can also be printed.

The routine for outputting individual characters automatically waits for the printer to
“finish”. However, you also have the option of querying the printer status yourself.

CALL 3BH Print a character

The character passed in the A register (in ASCII code) is output to a connected
printer.

A line counter is automatically included in the device control block on the
7825H-782CH, which is reset to 0 when there are 66 lines. These 66 lines per page
are a system default value and when initializing the communication area this is set
and located at address 7828H (number of lines/page + 1). 66 lines/page
corresponds to 11 inches and therefore the American sheet format. The German DIN
A4 format is approx. 12 inches, i.e. with German paper dimensions, if you want to
use the sheet feed control, you should change this value to 72 lines/page (+1 =
49H).

In addition to normal ASCII text characters, control characters can also be
transferred to the printer, e.g. escape sequences for font selection (see printer
operating instructions)

The following control characters are already recognized and executed by the printer
driver:

00H = The printer status is determined and when:
Bit 0 of the A register returned.

- Bit B = 0 - the printer is ready to print
- Bit B = 1 - the printer is not ready

The zero flag is set accordingly.

- 105 -

0BH = Absolute sheet feed.
The printer is moved to the top of the next page,

0CH = Conditional sheet feed.
The printer is only moved to the beginning of the next page if it
is not already at the beginning of a page (line counter at 7829H
= 0).

0DH = Carriage Return (CR)
A carriage return character (0DH) and a line feed character
(0AH) are output.
Attention: You should set your printer so that it does not
automatically perform a line feed after a carriage return (see the
printer operating instructions).
Otherwise a blank line is always inserted.

0AH = Line feed.
Internally converted to a 0DH before execution.

CALL 5C4H Determine printer status

By calling this routine, the printer status can be queried directly (only the 'BUSY' line
is monitored).

The status is transferred in bit 0 of the A register and the ZERO flag is set
accordingly.

Bit 0=0 (Z flag = 1) - The printer is ready
Bit 0=1 (Z-Flag=0) - The printer is not ready

Example:

The text 'TEST A PRINTER OUTPUT' should be printed on the printer.
If it is not ready to print, the text “PRINTER NOT READY” should appear on the
screen instead.

- 106 -

…
…
CALL 54CH ; Check printer status
JR NZ,ERROR ; not ready
LD HL,PRTEXT ; text address

LOOP LD A,(HL) ; character of text
OR A ; end of text?
JR Z,CONT ; yes, continue rest of program
CALL 3BH ; print character
INC HL ; address of next char
JR LOOP ; repeat until end of text

CONT …
…

ERROR LD HL,ERRTXT ; address of Error Text
CALL 2B75H ; display error text on screen
…
…

PRTEXT DEFM ‘TEST A PRINTER OUTPUT’
DEFB 0

ERRTXT DEFM ‘PRINTER NOT READY’
DEFB 0

The cassettes - input/output

Communication with a connected cassette recorder takes place via the input/output
area 6800H-6FFFH (see Chapter 4). When reading, the information is taken over
from the recorder via bit 6, and output to the cassette recorder via bits 1 and 2. In
contrast to the screen and printer, the transmission takes place serially, i.e. for a
character to be written or read (= 1 byte), 8 bits must be written or read one after the
other.

There are a number of routines available that you can use when editing the cassette
interface yourself. The standard format of a recording can be found in Chapter 8,
section "The Cassette Driver".

Since bit recording is very time-critical, it is important to switch off the interrupts (DI)
before any processing (reading or writing), otherwise you will not transmit any useful
information.

- 107 -

Write to the cassette

CALL 3511H Write a byte to the cassette

With this routine, a byte is output serially bit by bit to the cassette recorder. The byte
to be output must be provided in the A register.

CALL 3558H Write file header to cassette

This outputs a complete file header to the cassette recorder. This consists of the
synchronization bytes (255 x 80H), the header (5 x FEH), the file identifier (F0H =
BASIC, F1H = binary file, F2H = data file) and the file name (max. 15 characters).

The file name must be provided in a separate field, enclosed in quotation marks. HL
must contain the starting address of this field. The file identifier must be passed in
the C register.

If the carry bit is set when jumping back, the recording process was interrupted by
the <CTRL-BREAK> keys.

Example:

The memory area from 8000H to 8FFFH should be output to the cassette recorder
as a binary file called "TEST". A checksum should be written behind the data for later
loading control.

…
…
DI ; disable interrupts
LD C,0F1H ; binary file type
LD HL,NAME ; address of filename text
CALL 3358H ; output file header
JP C,BREAK ; interrupted by BREAK key
LD BC,400 ; a short break in between
CALL 60H ; call delay function
CALL 3AE8H ; check if BREAK key is pressed
JP C,BREAK ; yes, abort
LD IX,7823H ; address of checksum bytes

- 108 -

LD HL,8000H ; address of data to send
LD A,L ; LSB of data address
CALL 3511H ; write 1 byte
LD (IX),A ; store to checksum variable
XOR A ; MSB of checksum must be 0
LD (IX+1),A ; store checksum MSB
LD A,H ; MSB of data address
CALL 3511H ; write 1 byte
CALL 388E ; add to checksum
EX DE,HL ; address of data into DE
LD HL,8FFFH ; address of last data byte
INC HL ; +1 to save to cassette
LD A,L ; LSB of above address
CALL 3511H ; write 1 byte
CALL 388E ; add to checksum
LD A,H ; MSB of above address
CALL 3511H ; write 1 byte
CALL 388E ; add to checksum

LOOP CALL 3AE8H ; check if BREAK key is pressed
JP C,BREAK ; yes, abort
LD A,(DE) ; data byte to write
INC DE ; increment address for next byte
CALL 3511H ; write 1 byte
CALL 388E ; add to checksum
RST 18H ; End reached? (compare DE and HL)
JR NZ,LOOP ; no, write next byte
LD A,(IX) ; LSB of checksum
CALL 3511H ; write 1 byte
LD A,(IX+1) ; MSB of checksum
EI ; enable interrupts
…
…

BREAK …
…

NAME DEFM“TEST” ; filename
DEFB 0

In the example above, some routines were called that have not yet been described.

- 109 -

CALL 3AE8H Query BREAK key

This routine checks whether the <CTRL> and <BREAK> keys were pressed at the
same time (BREAK function). If this is the case, the CARRY bit is set.

CALL 388EH Create checksum

This routine is used by the cassette recording routine and the reading routine to
determine the checksum of a recording. For this purpose, the two bytes 7823H and
7824H are available in the communication area, which are to be addressed and
initialized with the register pair IX.

RST 18H Compare HL with DE

Here the register pair HL is logically compared with the register pair DE. The CARRY
and ZERO flags are set according to the result of the comparison.

This routine is described in detail when discussing the RESTART procedures.

Reading from the cassette

CALL 3775H Read one byte from cassette

This reads a single byte from the cartridge and makes it available in the A register.
The register pairs BC, DE and HL remain unchanged.

In the event of read errors, the CARRY bit is set.

Before reading a byte, the reading routine must be synchronized to a valid record.

When reading several bytes, the 600 baud rhythm must be adhered to.

- 110 -

CALL 35E1H Search for file on the cassette

This routine determines the beginning of a file on the cassette and synchronizes the
reading routine to the recording.

The name of the file to be searched for must be stored in the communication area
starting at address 7AB2H and ending with 00H. The routine at 358CH can also be
used for this, to which the start address of the name field in HL must be passed.

If a file with the specified name is found on the cassette, the file identifier is
transferred to field 7AB2H and can be checked there.

During the search process, messages about the search status are displayed in the
last line of the screen:

WAITING - no synchronization bytes have been found yet.

FOUND X:Filename

A file with the specified name was found.
'X:' = file identifier

T = text file (e.g. BASIC program)
B = Binary file (e.g. machine programs)
D = data file

If the name specified does not correspond to the file you are looking for, the search
process continues automatically and several FOUND messages may appear in a
row.

The above messages can be suppressed by entering a value other than 0 in byte
784CH of the communication area.

If the BREAK button is pressed (CTRL-BREAK) during the search process, you will
not jump back to the calling program, but to the BASIC main loop.

Example:

The memory area recorded in the previous example should be read in again. The
checksum must be determined and checked at the end of the recording. The
message output should be suppressed.

- 111 -

…
…
DI ; disable interrupts
LD A,1 ; suppress message output
LD (784C),A
LD HL,NAME ; address of filename text
CALL 358CH ; copy filename to Communication Area

NEXT CALL 35E7H ; search file on cassette
LD A,(7AD2) ; Name found, check file Type
CP 0F1H ; is this binary file?
JR NZ,NEXT ; no, search next file
LD IX,7823H ; address of checksum
CALL 3868H ; Read start and end address
JP C,ERROR ; Reading error!
OR A ; clear Carry flag
SBC HL,DE ; Determine program length
JP C,ERROR ; start address > end address
PUSH HL
POP BC ; program length into BC

LOOP CALL 3775H ; read 1 byte from cassette
JP C,ERROR ; Reading error!
LD (DE),A ; stroe byte into memory
CALL 388EH ; update checksum
INC DE ; destination address + 1
DEC BC ; bytes to read -1
LD A,C ; = 0?
OR B ; BC= 0?
JR NZ,LOOP ; no, read next byte
CALL 3775H ; read LSB of checksum
CP (IX) ; is the same as computed
JP NZ,ERROR ; no, Reading error!
CALL 3775H ; read MSB of checksum
CP (IX+1) ; is the same as computed
JP NZ,ERROR ; no, Reading error!
EI ; enable interrupts
…
…

ERROR …
…

NAME DFM ‘“TEST”’ ; filename (quoted)

- 112 -

Two auxiliary routines were used in the example, which will be explained briefly.

CALL 358CH Transfer file name

The routine is used to transfer a file name located in the program into the
communication area starting at address 7A9DH.

The file name must be addressed with HL before being called and must be enclosed
in quotation marks.

CALL 386BH Load start and end address

If the correct file has been found on the cassette, the start and end addresses of the
memory area can be read from the cassette.

When returning, DE contains the start address and HL the end address + 1 of a text
or binary file.

The checksum is initialized by this routine.

If the CARRY flag is set when returning, a read error occurred.

Speaker - output

You can also address the small built-in loudspeaker of the LASER computers and
the VZ200 from machine programs.

As already described at the beginning, this loudspeaker is hard-wired to bits 0 and 5
of the input/output area 6800H-6FFFH.

Bit 5 Bit 0
| |
|_________ _______|

_|_____|_
__|________|__ Speaker

- 113 -

These two bits must always be complementary. A tone is produced by switching bits
at a specific frequency. However, you don't need to worry about having to do this
yourself from machine programs. Two ROM routines allow you to output either a
single tone or an entire melody with one call.

CALL 345CH Emit a single tone

If the correct file has been found on the cassette, the start and end addresses of the
memory area can be read from the cassette.

When calling, the pulse length must be specified in the HL register pair (according to
the table from 2CFH) and the tone duration in the BC register pair.

All registers are changed.

To produce a clean tone, interrupts should be turned off.

Example:
…
…
DI ; disable interrupts
LD HL,0A0H ; Load pulse length
LD BC,6 ; Load tone duration
CALL 345CH ; Output sound
EI ; enable interrupts
…
…

A high, short beep will be emitted.

The higher the value in HL, the darker the tone becomes. The duration of the sound
also depends on the pitch. In order to achieve the same duration for two different
tones, a larger value for BC must be selected for the higher tone.

CALL 2BF5H Play a melody

This routine allows a complete melody to be played in one call. The individual notes
must be specified as with a BASIC SOUND command:

tone,length; tone,length; tone,length; …

- 114 -

The melody must be provided as an ASCII string in the program and addressed with
the HL register pair. The tone and length must be separated by a comma; several
tones can be specified one after the other, separated by semicolons.

Example: Playing a little melody
…
…
LD HL,MELODY ; address of melody data
CALL 3BF5H ; Play melody
…
…

MELODY DEFM ‘16,2;21,2;21,2;23,2;23,2;25,2;26,1;’
DEFM ‘28,2;26,2;25,2;23,2;23,2;21,4;’

Conversion routines

Data type conversion

A series of subroutines serves only to provide the numeric data of the correct type
before processing, i.e. to convert it from one data type to another.

The conversion routines expect the value to be converted in working register 1 of the
communication area (X register) and the data type of this value in the type flag at
address 78AFH.

The result is made available again in work area 1. After the conversion, the type flag
78AFH contains the identifier of the new data type.

CALL 0A7FH Floating point number into integer

The contents of workspace 1 are converted from a single or double precision
variable to an integer.

All registers are changed.

There is no rounding.

- 115 -

Example:

The single precision value 2.88539 is to be converted to integer.

…
…
LD DE,INVALUE ; address of value to convert
LD HL,7921H ; address of workspace 1 (X Reg)
LD BC,4 ; 4 bytes to copy
LDIR ; do copy value to X-Register
LD A,4 ; Type-Flag=4 (single precision)
LD (78AFH),A ; set Type of value inside X-Register
CALL 0A7FH ; call conversion routine
LD HL,(7921) ; HL - converted number
LD (VAR),HL ; store new value
…
…

INVALUE DEFB 45H,0AAH,38H,82H ; value 2.88539 stored as
; floating point number
; LSB-NSB-NSB-MSB

…
VAR DEFW 0 ; Result field contains the value

; after the conversion

CALL 0AB1H Integer to single precision number

The contents of work area 1 are converted from an integer to a single precision
floating point number.

Example:

The number 18569 is to be converted from the integer format into a single precision
floating point number and transferred to the VAR field.

…
…
LD A,89H ; LSB of value 18569
LD (7921H),A ; store in X-Register
LD A,48H ; MSB of value 18569
LD (7922H),A ; store in X-Register
LD A,2 ; Type-Flag=2 (integer)
LD (78AFH),A ; set Type of value inside X-Register

- 116 -

CALL 0AB1H ; call conversion routine
LD HL,VAR ; address of destination value
CALL 9CBH ; move value
…
…

VAR DEFS 4 ; variable area

After conversion, VAR contains the value 00H-12H-11H-8FH (LSB-NSB-MSB-EXP).
This corresponds to the number 18569 in single precision floating point form.

CALL 0ADBH Integer to double precision number

The contents of workspace 1 are converted from an integer to a double precision
floating point number.

Example:

The number 457 is to be converted to a double precision floating point number.

…
…
LD A,91H ; LSB of value 657
LD (7921H),A ; store in X-Register
LD A,2 ; MSB of value 657
LD (7922H),A ; store in X-Register
LD A,2 ; Type-Flag=2 (integer)
LD (78AFH),A ; set Type of value inside X-Register
CALL 0ADBH ; call conversion routine
LD DE,VAR ; address of destination value
LD HL,791DH ; destination address workarea 2
LD BC,8 ; 8 bytes to copy
LDIR
…
…

VAR DEFS 8 ; variable area

After conversion, VAR contains the value 657 as a floating point number
double precision (00H-0OH-00H-00H-00H-40H-24H-8AH)

- 117 -

ASCII string to numerical representation

The following three routines convert a numeric ASCII string into one of the three data
types.

When entering, the register pair HL must point to the beginning of the string to be
converted. The conversion ends when the first non-numeric character is reached.

All registers are changed.

CALL 1E5AH Convert ASCII string to integer

The ASCII string addressed with HL is converted into an integer.

The result is transferred into the register pair DE.

Example:

The ASCII string '16544' is to be converted into an integer.

…
…
LD HL,TEXT ; address of text to convert
CALL 1E5AH ; convert to integer
LD (VAR),DE ; store integer value
…
…

TEXT DEFM ‘16544’ ; ASCII text
DEFB 0 ; End of text byte
…

VAR DEFW0 ; Field to store integer value

After conversion, VAR contains the value 16544 as a 2-byte binary integer (=
40A0H).

- 118 -

CALL 0E6CH Convert ASCII string to binary value of any type

Converts the HL-addressed ASCII numeric string to one of the three binary data
types.

If the value of the ASCII string is less than 32768 and the ASCII string does not
contain a decimal point, no exponent specification 'E' or 'D' and no type identifier '#°'
or '!', the conversion to a 2-byte integer takes place..

If the value is greater than 32767 or the ASCII string contains a decimal point, the
exponent specification 'E' or the type identifier '!', it is converted into a
single-precision floating point number.

If an exponent specification is 'D' or a type designation '#', the conversion takes
place into a floating point number with double precision.

Example:

‘12345’ - Conversion to an integer
‘40516’ - Conversion to single precision
‘12.3’ - Conversion to single precision
‘12345!’ - Conversion to single precision
‘12345#’ - Conversion to double precision
‘123E10’ - Conversion to single precision
‘123D10’ - Conversion to double precision

The result is transferred to work area 1. The type flag shows the type of the result.

Example:

…
…
LD HL,TEXT ; address of text to convert
CALL 0E6CH ; convert to binary value
…
…

TEXT DEFM ‘24657’ ; ASCII text
DEFB 0 ; End of text byte
…

The string '24457' is converted to an integer and passed into workspace 1
(7921H-7922H). The type flag at 78AFH is set to 02H (= integer).

- 119 -

CALL 0E65H ASCII string to double precision

This is a prelude to the above routine at 0E6CH. This forces conversion to a floating
point number with double precision, regardless of the size and configuration of the
ASCII string.

Example:

…
…
LD HL,TEXT ; address of text to convert
CALL 0E65H ; convert to double precision
…
…

TEXT DEFM ‘24657’ ; ASCII text
DEFB 0 ; End of text byte
…

Convert binary value to ASCII string

The three following routines convert a numeric value from the binary format into an
ASCII string,

CALL 0FAFH Convert content from HL to ASCII

A binary value located in the HL register pair is converted into an ASCII string and
displayed on the screen at the cursor position.

This routine is used by the BASIC interpreter to display the line number of a program
line on the screen.

Example:

…
…
LD HL,3039H ; value to convert
CALL 0FAFH ; convert to ASCII string
…
…

The value 12345 (= 3039H) is displayed on the screen.

- 120 -

CALL 132FH Convert integer to ASCII

An integer located in work area 1 is converted into an ASCII string and stored in
memory at the location addressed with HL. Registers B and C should be set to a
value greater than 6 at entry to suppress the insertion of commas or periods in the
ASCII string.

The result is given an end identifier 00H

Example:

…
…
LD HL,456 ; value to convert
LD (7921H),HL ; store in work area 1
LD BC,0606H ; B and C >= 6
LD HL,STRING ; addres of destination buffer
CALL 132FH ; convert to ASCII string
…
…

STRING DEFS 6 ; 6 bytes of buffer

After conversion, the result field contains the entry 30H-30H-34H-35H-36H-00H =
00456.

CALL 0FBEH Convert Floating point value into ASCII string

Converting a single or double precision floating point number to an ASCII string. The
floating point number must be provided in work area 1. The generated ASCII string is
passed to the print buffer for formatted number output at 7930H.

The ASCII string ends with 00H, HL points to the beginning of the buffer when
exiting, DE points to the end of the generated ASCII string (00H). In the event of a
field overflow, the character '%' is entered in the byte in front of the print buffer
(792FH).

During this conversion, convenient formatting of the ASCII string to be generated can
be requested. This formatting is controlled by entries in the A, B and C registers.

- 121 -

The individual bits of the A register have the following effects on formatting:

A Register:
Bit 7 = 0 - do not do any formatting

= 1 - Carry out formatting according to the bits set below.

Bit 6 = 1 - A comma is inserted every 3 places to separate the
thousands values.

Bit 5 = 1 - leading spaces of the ASCII string are replaced by '*'.

Bit 4 = 1 - The character '$' must be displayed before the number.

Bit 3 = 1 - A '+' sign must be displayed.

Bit 2 = 1 - The sign must be shown after the number.

Bit 1 - not used

Bit 0 = 1 - ASCII representation with expense output

B Register:

Number of characters to be output to the left of the decimal point.

C Register:

Number of characters to be output to the right of the decimal point.

When calling in 0FBDH instead of 0 FBEH, formatting is suppressed.

Example:

…
…
LD HL,VALUE ; Conversion of an ASCII string
CALL 0E6CH ; into simple precision
CALL 0FBDH ; and back to an ASCII string
…
…

VALUE DEFM ‘1234.56’ ; Initial value
DEFB 0 ; End of string terminator

- 122 -

The output ASCII string ’1234.56° is first converted into a single precision number.
The CALL 0FBDH is used to convert back to the original ASCII string, which is now
in the range 7930H. with a leading space and a trailing 00H.
Register HL contains entry 7930H and register DE contains entry 7938H.
The result field has the following content in hexadecimal:
20H-31H-32H-33H-34H-2EH-35H-36H-00H

Arithmetic routines

These routines perform arithmetic operations between two operands of the same
data type,

The routines await the operands in the specified registers or work areas. The type
flag should be set to the appropriate data type before calling.

The division routines use the division subroutine in the communications area
(7880H-788DH); this must be there intact.

Routines for processing integers

The following 5 routines perform arithmetic operations between two 16-bit integers.
The two operands are to be provided in the register pairs HL and DE. With one
exception, the content of DE remains unchanged; the result is usually returned in the
register pair HL.

CALL 0BD2H Add two integers

Adds the contents of the register pair DE to the contents of the register pair HL. The
sum is handed over in HL.

However, if the sum exceeds 2^15 (32767) (overflow), both values are first converted
to a single precision floating point number and the operation is repeated. In this
case, the result is then available as a single precision value in working area 1 of the
communication area. The type flag at 78AFH receives the entry '4'.

- 123 -

Example:

The integers stored in VAL1 and VAL2 must be added.

…
…
LD HL,VAL1 ; value 1
LD DE,VAL2 ; value 2
LD A,2 ; Type Flag = 2 (Integer)
LD (78AFH),A
CALL 0BD2H ; execute addition
LD A,(78AFH) ; Type Flag after addition
CP 2 ; is it still Integer?
JR NZ,SPVAL ; no, now it’s single precision

INTVAL … ; yes
…
…

VAL1 EQU15 ; value 1
VAL2 EQU40 ; value 2

CALL 0BC7H Subtract two integers

Subtracts the value in DE from the value in HL. The difference is transferred in the
register pair HL.

If an underflow occurs, i.e. the subtraction of two values of unequal sign results in a
value > 2^15 (32767), both values are converted into single-precision floating point
numbers before subtraction again. The difference is passed as a single precision
value in workspace 1. Such a case can be recognized by the type flag, which is set
from '2' to '4'.

- 124 -

Example:

VAL2 should be subtracted from VAL1.
…
LD HL,VAL1 ; value 1
LD DE,VAL2 ; value 2
LD A,2 ; Type Flag = 2 (Integer)
LD (78AFH),A
CALL 0BC7H ; execute subtraction
LD A,(78AFH) ; Type Flag after subtraction
CP 2 ; is it still Integer?
JR NZ,SPVAL ; no, now it’s single precision

INTVAL … ; yes
…

VAL1 EQU50 ; value 1
VAL2 EQU30 ; value 2

CALL 0BF2H Multiplication of 2 integers

The content of HL is multiplied by the content of DE. The product is ready
then in HL.

In case of an overflow (product > 2^15), both values are converted to single
precision floating point numbers and the multiplication is performed again. In this
case, the product is in work area 1, the type flag contains the value 4.

Example:

VAL2 should be subtracted from VAL1.
…
…
LD HL,VAL1 ; value 1
LD DE,VAL2 ; value 2
LD A,2 ; Type Flag = 2 (Integer)
LD (78AFH),A
CALL 0BF2H ; execute multiplication
LD A,(78AFH) ; Type Flag after multiplication
CP 2 ; is it still Integer?
JR NZ,SPVAL ; no, now it’s single precision

INTVAL … ; yes
…

- 125 -

VAL1 EQU18 ; value 1
VAL2 EQU12 ; value 2

CALL 2490H Division of integers

The content of DE is divided by HL.

Both values are converted to single precision floating point numbers before division.
The quotient is also passed with single precision in working area 1. The type flag at
78AFH receives the entry '4'.

The contents of DE and HL will be destroyed.

Example:

VAL1 is to be divided by VAL2.
…
…
LD DE,VAL1 ; Load dividend
LD HL,VAL2 ; Load divisor
CALL 2490H ; execute division
LD A,(78AFH) ; Type Flag after multiplication
…
…

VAL1 EQU80 ; value 1
VAL2 EQU4 ; value 2

CALL 0A39H Comparison of two integers

The contents of HL and DE are compared algebraically. Both register contents
remain unchanged.

The result of the comparison is transferred to the A register and the status flags (Z =
ZERO flag, C = CARRY flag):

HL > DE A = 1
HL = DE A = 0 Z-Flag = 1
HL < DE A = -1 C-Flag = 1, S-Flag = 1

- 126 -

Example:

The contents of VAL1 and VAL2 must be compared.
…
LD HL,(VAL1) ; value 1
LD DE,(VAL2) ; value 2
CALL 0A39H ; execute comparison
JP Z,EQUAL ; when VAL1 = VAL2
JP C,LESSER ; when VAL1 < VAL2

GREATER … ; when VAL1 > VAL2
…

VAL1 DEFW80 ; value 1
VAL2 DEFW4 ; value 2

Single precision aritimetic operations

Five additional routines are available to arithmetically compute single-precision
floating point numbers.

These routines expect one argument in register pairs BC and DE and the second
argument in work area 1 of the communication area. The result is generally made
available in work area 1.

CALL 0716H Single precision addition

Adding two single precision floating point numbers.

One summand must be provided in BC/DE, the second summand in work area 1.
After addition, the sum is in work area 1.

Example:
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to workspace 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE registers
CALL 716H ; execute addition
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

- 127 -

The result of the addition is in work area 1.
CALL 0713H Single precision subtraction

Subtracts a single-precision floating point number in BC/DE from the content of
workspace 1. The difference is then workspace 1.

Example:
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to workspace 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE registers
CALL 713H ; execute subtraction
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

CALL 0847H Single precision multiplication

Multiplies the single precision value generally found in working area 1 with the
content of BC/DE. The product is then in work area 1.

Example:
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to workspace 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE registers
CALL 847H ; execute multiplication
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

- 128 -

CALL 2490H Single precision division

Divides a single precision floating point number in BC/DE by the contents of work
area 1 (single precision). The quotient is then in working area 1.

Example:
…
LD HL,VAL1 ; address of divisor
CALL 9B1H ; transfer to workspace 1
LD HL,VAL2 ; address of dividend
CALL 9C2H ; transfer to BC/DE registers
CALL 847H ; execute division
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

CALL 0A0CH Comparison of two single precision values

This routine performs an algebraic comparison of two floating point numbers. These
are provided externally in the BC/DE registers and in work area 1.

The result of the comparison is transferred to the A register and the status flags (Z =
ZERO flag, C = CARRY flag):

BC/DE > X-Reg A = -1 C-Flag = 1, S-Flag = 1
BC/DE < X-Reg A = 1
BC/DE = X-Reg A = 0 Z-Flag = 1

Example:

…
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to workspace 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE registers
CALL 0A0CH ; execute comparison
JP Z,EQUAL ; when VAL1 = VAL2
JP C,LESSER ; when VAL1 < VAL2

GREATER … ; when VAL1 > VAL2
…

- 129 -

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

Double precision arithmetic operations

As for the previous two data types, five routines are available for the arithmetic
combination of two double-precision floating-point numbers.

One argument must be provided in work area 1 (791DH-7924H) and the second
argument in work area 2 (7927H-792EH). The result is always in work area 1.

CALL 0C77H Double precision addition

Here two double precision floating point numbers are added and the sum is passed
to work area 1.

Example:
…
LD A,8 ; Type-Flag 8 (double precision)
LD (78AFH),A
LD DE,VAL1 ; address of value 1
LD HL,79D1H ; address of workspace 1 (X-Reg)
CALL 9D3H ; transfer to workspace 1
LD DE,VAL2 ; address of value 2
LD HL,7927H ; address of workspace 2 (Y-Reg)
CALL 9D3H ; transfer to workspace 2
CALL 0C77H ; execute addition
…
…

VAL1 DEFS 8 ; value 1
VAL2 DEFS 8 ; value 2

CALL 0C70H Double precision subtraction

Subtracts a double-precision floating point number in workspace 2 from the content
of workspace 1. The difference is then in workspace 1.

- 130 -

Example:
…
LD A,8 ; Type-Flag 8 (double precision)
LD (78AFH),A
LD DE,VAL1 ; address of value 1
LD HL,79D1H ; address of workspace 1 (X-Reg)
CALL 9D3H ; transfer to workspace 1
LD DE,VAL2 ; address of value 2
LD HL,7927H ; address of workspace 2 (Y-Reg)
CALL 9D3H ; transfer to workspace 2
CALL 0C70H ; execute subtraction
…
…

VAL1 DEFS 8 ; value 1
VAL2 DEFS 8 ; value 2

CALL 0DA1H Double precision multiplication

Multiplies the double precision floating point number in workspace 2 with the
contents of workspace 1. The product is then in workspace 1.

Example:
…
LD A,8 ; Type-Flag 8 (double precision)
LD (78AFH),A
LD DE,VAL1 ; address of value 1
LD HL,79D1H ; address of workspace 1 (X-Reg)
CALL 9D3H ; transfer to workspace 1
LD DE,VAL2 ; address of value 2
LD HL,7927H ; address of workspace 2 (Y-Reg)
CALL 9D3H ; transfer to workspace 2
CALL 0DA1H ; execute multiplication
…
…

VAL1 DEFS 8 ; value 1
VAL2 DEFS 8 ; value 2

- 131 -

CALL 0DE5H Double precision division

Divides a double-precision floating point number in workspace 1 by one in
workspace 2. The quotient is then in workspace 1.

Example:
…
LD A,8 ; Type-Flag 8 (double precision)
LD (78AFH),A
LD DE,VAL1 ; address of dividend
LD HL,79D1H ; address of workspace 1 (X-Reg)
CALL 9D3H ; transfer to workspace 1
LD DE,VAL2 ; address of divisor
LD HL,7927H ; address of workspace 2 (Y-Reg)
CALL 9D3H ; transfer to workspace 2
CALL 0DA1H ; execute division
…
…

VAL1 DEFS 8 ; value 1
VAL2 DEFS 8 ; value 2

CALL 0A4FH Comparison of two double precision values

Compares two double precision floating point numbers. These are to be provided in
work areas 1 and 2. The result of the comparison is displayed in the A register and
the flag register.:

X-Reg < Y-Reg A = 1
X-Reg = Y-Reg A = 0 Z-Flag = 1
X-Reg > Y-Reg A = -1 C-Flag = 1, S-Flag = 1

Example:
…
…
LD A,8 ; Type-Flag 8 (double precision)
LD (78AFH),A
LD DE,VAL1 ; address of dividend
LD HL,79D1H ; address of workspace 1 (X-Reg)
CALL 9D3H ; transfer to workspace 1
LD DE,VAL2 ; address of divisor

- 132 -

LD HL,7927H ; address of workspace 2 (Y-Reg)
CALL 9D3H ; transfer to workspace 2

CALL 0A4FH ; execute comparison
JP Z,EQUAL ; when VAL1 = VAL2
JP C,LESSER ; when VAL1 < VAL2

GREATER … ; when VAL1 > VAL2
…

VAL1 DEFS 8 ; value 1
VAL2 DEFS 8 ; value 2

Mathematical routines

The following routines are used to calculate mathematical functions. With one
exception, these only receive one argument when called, which is to be passed in
work area 1 of the communication area. The type of the argument must be specified
in the type flag at 78AFH.

CALL 0977H Determine absolute value ABS(N)

The value located in workspace 1 is converted to its positive equivalent. The result is
then also in work area 1.

If the negative integer -32768 is in work area 1, the result is transferred as a
single-precision floating point number. The type flag at 78AFH is corrected
accordingly.

All data types are permitted as arguments.

Example:

The absolute value of the single precision floating point number in field VAL1 is to be
determined.

…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,VAL1 ; address of value 1
CALL 7B1H ; transfer to workspace 1

- 133 -

CALL 0977H ; calculate absolute value
…
…

VAL1 DEFB 0F2H,80H,0BCH,87H ; single precision = -94.3456

After the operation is completed, the value 94.3456 in single precision appears in
work area 1.

CALL 0B37H Finding the next lower integer INT(N)

This routine determines the integer part of a floating point number. This must be
provided in workspace 1, the type flag must indicate the correct data type.

If the value size allows it (-32768 to +32767), the result is returned in the integer data
type, otherwise the data type remains unchanged. The type of the result can be
determined in Type Flag at 78AFH.

The result is in work area 1.

Example:

The integer part of the single precision floating point number in value i must be
determined.

…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,VAL1 ; address of value 1
CALL 7B1H ; transfer to workspace 1
CALL 0B37H ; calculate integer part
…
…

VAL1 DEFB 00H,6FH,49HH,84H; single precision = 12.5896

The result, the number 12, is in work area 1 as the data type 'integer', the type flag at
78AFH has the entry '2'.

- 134 -

CALL 15BDH Determine the arc tangent ATN (N)

The corresponding angle in radians is determined from a tangent value stored in
working area 1 as a floating point number. The result is made available as a floating
point number in the workspace.

Example:

The angle in radians is to be determined from the tangent value stored in the 'TAN'
field and transferred to the 'RAD' field.

…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,TAN ; tangent value
CALL 9B1H ; transfer to workspace 1
CALL 15BDH ; calculate arc tangent
LD HL,RAD ; address of field
LD DE,7921H ; address of workspace 1
CALL 9D3H ; copy into result field
…
…

TAN DEFB 3AH,0CH,13HH,80H ; tangent of 30 st (0.57735)
RAD DEFS 4

After the above routine has been completed, the 'RAD' field contains the value of the
angle 30° in radians (91H-0AH-06H-80H = 0.523598)

CALL 1541H Find the cosine of an angle COS (N)

Gets the cosine of an angle specified in radians.

The angle is to be provided as a floating point number in work area 1, the result is
also passed as a floating point number in work area 1.

- 135 -

Example:

The cosine of the angle specified in the 'RAD' field must be determined and
transferred to the 'COS' field.

…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,RAD ; angle value
CALL 9B1H ; transfer to workspace 1
CALL 1541H ; calculate cosine
LD HL,COS ; address of field
LD DE,7921H ; address of workspace 1
CALL 9D3H ; copy into result field
…
…

RAD DEFB 91H,0AH,06H,80H ; radians for 30 st (0.523598)
COS DEFS 4

After the calculation, the cosine of the angle of 30° is in the 'COS' field
(D7H-B3H-5DH-80H = 0.866025)

CALL 1547H Find the sine of an angle SIN (N)

The sine of an angle is determined.

The angle must be provided in radians as a floating point number in working area 1.
The result is then also in work area 1.

Example:

The sine of the angle in the 'RAD' field is to be determined and transferred to the
'SIN' field.

…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,RAD ; angle value
CALL 9B1H ; transfer to workspace 1
CALL 1547H ; calculate cosine

- 136 -

LD HL,SIN ; address of field
LD DE,7921H ; address of workspace 1
CALL 9D3H ; copy into result field
…
…

RAD DEFB 91H,0AH,06H,80H ; radians for 30 st (0.523598)
SIN DEFS 4

After the calculation, the ‘SIN’ field contains the sine of 30°.

CALL 1439H Finding the exponential function e^x EXP (N)

The argument N is to be provided as a single precision floating point number in
workspace 1. The result is also transferred in single precision in work area 1.

Example:

e^1.5708 has to be determined.
…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,EXP ; argument value
CALL 9B1H ; transfer to workspace 1
CALL 1439H ; calculate function
LD HL,RES ; address of Result field
LD DE,7921H ; address of workspace 1
CALL 9D3H ; copy into Result field
…
…

EXP DEFB 0DBH,0FH,49H,81H ; exponent (1.5708)
RES DEFS 4 ; Result field

- 137 -

JP 13F2H Raise X to the power of Y

The input values X and Y are to be provided as single precision floating point
numbers.

The base ‘X' is to be transferred to the stack area, the expander 'Y' is to be provided
in work area 1. After the calculation, the result is a single-precision floating point
number in working area 1.

There is a special feature to note here. Since one of the arguments must be provided
on the stack, the routine cannot be called with CALL, since the return address would
then be the last entry on the stack. Rather, the return address must be written to the
stack before the argument and the routine must be called with a JP. The following
example illustrates this procedure.

Example:

16^4 should be calculated.
…
…
LD HL, RET ; address to return from call
PUSH HL
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,BAS ; address of base value
CALL 9B1H ; transfer to workspace 1
CALL 9A4H ; push workspace 1 on Stack
LD HL,EXP ; address of exponent value
CALL 9B1H ; transfer to workspace 1
JP 13F2 ; calculate function

RET …
…
…

BAS DEFB 00H,00H,00H,85H ; base = 16
EXP DEFB 00H,00H,00H,83H ; exponent = 4

- 138 -

CALL 0809H Natural logarithm LOG (N)

Finds the natural logarithm of a single-precision floating-point number. The argument
is to be provided in work area 1, the result is also passed as a single precision
floating point number in work area 1.

Example:

The natural logarithm of 5 must be determined.
…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,ARG ; argument value
CALL 9B1H ; transfer to workspace 1
CALL 0809H ; calculate function
LD HL,LOG ; address of Result field
LD DE,7921H ; address of workspace 1
CALL 9D3H ; copy into Result field
…
…

ARG DEFB 00H,00H,02H,83H ; argument = 5
LOG DEFS 4 ; Result field

CALL 13E7H Find root of N SQR (N)

Finds the root of a value stored in workspace 1.
The result is also returned in workspace 1.

Example:

The root of 144 must be determined
…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,ARG ; argument value
CALL 9B1H ; transfer to workspace 1
CALL 13E7H ; calculate function
…

ARG DEFB 00H,00H,10H,88H ; argument = 144
After the calculation, the result (= 12) is in work area 1.

- 139 -

CALL 14C9H Generate random number RND (N)

Generates a random number between 0 and 1 or between 1 and N, depending on
the value 'N' that must be passed in workspace 1.

The generated random number is returned as a single precision floating point
number in workspace 1 and the type flag is modified accordingly.

The passed argument 'N' determines the range of the random number. If N=0, a
random number between 0 and 1 is generated. If N > 0, a random number between
1 and N is determined and passed as an integer.

Example:

A random number between 1 and 20 should be determined.
…
…
LD A,4 ; Type-Flag 4 (single precision)
LD (78AFH),A
LD HL,20 ; N = 20
LD (7921H),HL ; transfer integer to workspace 1
CALL 14C9H ; generate random number
…
…

After the calculation, a random number between 1 and 20 with single precision is in
working area 1.

The random number generated in this way is not a real random number, but is
formed from the last random number according to a fixed algorithm.

If more randomness is to be introduced, a new base value can be set with a CALL
1D3H, which is taken from the current status of the Z80 refresh register. The base
value and the last generated random number are at 78AAH - 78ADH in
communication area.

- 140 -

RESTART - vectors

In the lower address area of the Z80 there are so-called restart addresses, which
can be reached using a special 'RST' command.

The RESTART vectors 8H to 30H are routed to RAM expansion outputs at the
beginning of the communication area. From there, the vectors 8H - 20H jump into
ROM routines, which also fulfill useful functions for a machine language or
assembler programmer.

It is also possible to assign jump commands to the RAM expansion outputs in your
own routines. However, it should be borne in mind that all of the other routines listed
in this chapter can no longer be used so easily, as they occasionally also make use
of the restart commands.

RST 08H Check a character

This routine is used by the BASIC interpreter to check the syntax of an input line.
The character addressed by HL is compared with the character following the RST 8
command. If both are the same, the RST 10 routine is automatically called and from
there it jumps back to the 2nd byte after the RST 8 command. The HL register pair
contains the next good character determined by RST 10, the A register contains this
character.

If the two characters do not match, an error message "SYNTAX ERROR" is
generated and a jump is made to the input phase of the BASIC interpreter.

Example:

Checking a text addressed by HL to see whether it consists of the characters 'A=B'.
…
…
LD HL,TEXT ; address of text to check
RST 8
DEFB ‘A’
RST 8
DEFB ‘=’
RST 8
DEFB ‘B’
…

If one of the characters does not match, a SYNTAX ERROR is generated.

- 141 -

RST 10H Find next valid character

This routine is used by the BASIC interpreter to determine and accept the next valid
character when analyzing an input line.

The register pair HL is used to address a text string. When jumping in, the address
contained therein is incremented by 1. The next character addressed by HL is
loaded into the A register and the carry flag is set according to the character type.

Carry = 0 - Character is not numeric
Carry = 1 - Character is numeric

The ZERO flag is set when the end of the text has been reached. This must be
identified by a byte = 00H.

When editing the text string, spaces and the control characters 09H (TAB) and 0AH
(LF) are not taken into account; they are simply ignored.

Example:

HL points to a program line that contains a value assignment. The line has been
edited up to the equal sign. It must be checked whether this is followed by a variable
or a constant.

…
…

NEXT RST 10H ; load next character
JR NC,NONUM ; not numeric
CALL 1E5AH ; load constant value
JP CONTINUE ; continue program

NONUM CP ‘+’ ; is it a '+' sign?
JR Z,NEXT ; yes, load next character
CP ‘-’ ; is it a '-' sign?
JR Z,NEXT ; yes, load next character
CALL 260DH ; Variable in variable table

; determine
…
…

- 142 -

RST 18H Compare DE with HL

This routine carries out a logical comparison of the two register pairs DE and HL. It
does not work correctly with signed integers; for signed integer values the routine
0A39H (arithmetic comparison HL:DE) must be used.

The result is displayed in the ZERO and CARRY flags. The contents of the A register
are changed.

Carry = 1 - HL < DE
Carry = 0 - HL >= DE
Zero = 1 - HL = DE
Zero = 0 - HL <> DE

Example:

It must be checked whether a value in DE is in the range 200 - 500.
…
…
LD HL,500 ; load upper limit value
RST 18H ; compare with value in DE
JR C,ERROR ; value in DE > 500
LD HL,199 ; load lower limit value
RST 18H ; compare with value in DE
JR NC,ERROR ; value in DE <= 199
…
…

RST 20H Determine data type

The type flag at 78AFH is evaluated and a numeric value is returned in the A register
depending on the data type displayed there. The flag register can also be evaluated.

Type Status A Register

Integer NZ,C,M,E -1
String Z,C,P,E 0
Single prec. NZ,C,P,O 1
Double prec. NZ,NC,P,E 5

The value passed in A register corresponds to the type code in 78AFH - 3.

- 143 -

The routine is used by the BASIC interpreter to determine the data type of a value
stored in workspace 1. But be careful, type flag and workspace 1 do not always have
to be synchronous.

Example:

After adding two integers, it is necessary to check whether the result was passed as
an integer or as a single-precision floating point number.

…
…
LD A,2 ; Type-Flag = Integer
LD (78AFH),A
LD DE, VAL1 ; value 1
LD HL, VAL2 ; value 2
CALL 0BD2H ; add values
RST 20H ; check type of resul value
JP M,INT ; jump if Integer

SP … ; single precision
…

INT … ; integer
…

VAL1 DEFW2 ; value 1
VAL2 DEFW2 ; value 2

Transfer routines

This section describes some routines that transfer data of various types within memory or
between registers and memory.

CALL 09B4H Single precision number from BC/DE to work area 1

Transfers a single precision floating point number from the register pairs BC/DE into
work area 1 of the communication area.

The content of HL is destroyed, BC/DE remains unchanged.

Attention: The type flag at 78AFH is not updated.

- 144 -

Example:

Two single precision floating point numbers in memory must be added.
…
…
LD DE,(VAL1) ; MSB + Exponent of 1st number
LD BC,(VAL1+2) ; LSB + NSB of 1st number
CALL 09B4H ; transfer to work area 1
LD DE,(VAL2) ; MSB + Exponent of 2nd number
LD BC,(VAL2+2) ; LSB + NSB of 2nd number
CALL 0716H ; add numbers
…
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

VAL1 and VAL2 must contain the values in the sequence LSB-NSB-MSB-EXP.

CALL 09B1H Single precision number from address HL to work area 1

A single-precision floating point number in memory is transferred to work area 1. HL
must contain the starting address of the memory area.

The contents of HL/BC/DE will be destroyed.

Example:

…
…
LD HL,VAL1 ; address of single prec. number
CALL 09B1H ; transfer to work area 1
…
…

VAL1 DEFS 4 ; value 1

- 145 -

CALL 09CBH Single precision number from work area 1 to memory

A floating point number in work area 1 is transferred to the program memory. HL
must contain the starting address of the memory area,

The contents of all registers are changed.

Example:

…
…
LD HL,VAL1 ; address for single prec. number
CALL 09CBH ; transfer from work area 1
…
…

VAL1 DEFS 4 ; value 1

CALL 09C2H Single precision number from memory into BC/DE regs

HL must contain the starting address of the memory area. The contents of all
registers are changed.

Example:

Two single precision numbers are to be added. The result must be transferred to
BC/DE.

…
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to work area 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE
CALL 0716H ; add numbers
LD BC,(7923H) ; MSB + Exponent of result
LD DE,(7921H) ; LSB + NSB of result
…
…

VAL1 DEFS 4 ; value 1

- 146 -

VAL2 DEFS 4 ; value 2

VAL1 and VAL2 must contain the values in the sequence LSB-NSB-MSB-EXP.

CALL 09BFH Single precision number from workspace 1 to BC/DE regs

Transfers a single precision floating point number from the work area 1 into the
register pairs BC/DE.

Attention, it is not checked whether work area 1 really contains a single-precision
floating point number; this must be ensured by the calling program.

Example:

Two single precision floating point numbers are to be multiplied. The result must be
provided in BC/DE.

…
…
LD HL,VAL1 ; address of value 1
CALL 9B1H ; transfer to work area 1
LD HL,VAL2 ; address of value 2
CALL 9C2H ; transfer to BC/DE
CALL 847H ; multiple numbers
CALL 9BFH ; result ito BC/DE
…
…

VAL1 DEFS 4 ; value 1
VAL2 DEFS 4 ; value 2

VAL1 and VAL2 must contain the values in the sequence LSB-NSB-MSB-EXP.

CALL 09A4H Transfer workspace 1 to the stack

Pushes a single-precision floating-point number from the workspace onto the stack.
This is saved there in the order LSB-NSB-MSB-EXP.

All register contents remain unchanged.

- 147 -

It is not checked whether there really is a single-precision floating point number in
work area 1.

This routine is needed, for example, if you want to use the exponentiation routine at 13F2H.
There the base is provided on the stack as a single-precision floating point number.

CALL 09D3H Variable transfer routine

Transfers, depending on the data type, a value in the length of the type flag (78AFH)
from the address specified in DE to the address specified in HL.

The registers A, DE and HL are changed.

Example:

A double precision variable with the name 'XY' should be determined in the variable
table and the value of the variable should be transferred to the program.

…
…
LD HL,NAME ; address variable name
CALL 260DH ; variable address into DE
LD HL,VAL2 ; address of value 2
RST 20H ; is it double precision?
JR NC,OK ; yes, continue
JP ERROR ; no

OK LD HL,DP ; address for variable value
CALL 9D3H ; transfer variable
…
…

NAME DEFM“XY’ ; name of the variable
DEFB 0 ; end of text

DP DEFS 8 ; place fo variable

CALL 29C8H Transferring a string variable

A string variable is transferred from the string area or the programs table into a
program-internal memory area.

- 148 -

When entering, HL must contain the address of the string variable in the variable
table and DE the receive address in the program.

For a string variable, an entry in the variable table has the following format:

1 byte = length of string
2 bytes = address of string data (text)

Example:

A string variable with the name 'A$' is to be transferred to an internal program field
'VAR'.

…
…
LD HL,NAME ; address variable name
CALL 260DH ; variable address into DE
RST 20H ; is it string variable?
JR Z,OK ; yes, continue
JP ERROR ; no

OK EX DE,HL ; address in Variable Table in HL
LD DE,VAR ; address of buffer
CALL 29C8H ; transfer variable
…
…

NAME DEFM“A$’ ; name of the variable
DEFB 0 ; end of text

DP DEFS 255 ; buffer for text

BASIC functions

BASIC functions differ from the previous functions mainly in the intensive use of the
communication area,

When using the following routines, care must be taken to ensure that the
communication area is intact and has not been destroyed or otherwise used by the
calling machine program.

- 149 -

The routines are particularly suitable for use in machine program subroutines that
are called from a BASIC program.

CALL 1B2CH Determine line in the program

This routine searches the Programs table for a BASIC line with a given line number.
The line number to be determined must be provided in the register pair DE.

When entering, HL must contain the address of the string variable in the variable
table and DE the receive address in the program.

All registers are changed. When you jump back, the success of the action can be
seen from the status flags. BC and HL contain corresponding address information.

Status Flags Register contents

Line found C/Z BC = Start address of the line in the
program table

Line not found, NC/Z HL/BC = End address of program +1
line number too large

Line not found, NC/NZ BC = Address of the line with the
but found larger line next highest line number
numbers in programs. HL = Address of the following line

in the program.

Example:

The program line with line number 500 should be determined in the program. If
present, the value 0 should be passed in the A register; if not present, the value 1
should be passed.

…
…
LD DE,500 ; line number
CALL 1B2CH ; search line in programm
LD A,1 ; default: line not found
JR NC,CONT ; yes, continue
XOR A ; A = 0: line found

CONT … ; continuation

- 150 -

…

The register pairs HL and BC contain the required address information according to
the table above, depending on the return status.

CALL 260DH Get the address of a variable

This routine can be used to search the variable table for a specific variable. The
name of the variable you are looking for must be provided in a program-internal field
and addressed with HL.

If the variable does not exist, a new entry is made in the variable table. The value
field is set = 0.

When returning, the register pair DE contains the address of the first value entry, the
type flag at 78AFH indicates the type of the variable found.

Simple variables or elements of a matrix can be determined with this routine. For a
matrix, the index must be added to the name as with a BASIC access, e.g. 'A(20)' for
the 20th element of the matrix 'A'.

Example:

The address of the variable 'AB' should be determined.
…
…
LD HL,NAME ; address variable name
CALL 260DH ; variable address into DE
LD (ADR),DE ; store addres for future use
…
…

NAME DEFM“AB’ ; name of the variable
DEFB 0 ; end of text

ADR DEFW 0 ; place for variable address

CALL 1EB1H GOSUB Emulation

This routine allows a BASIC subroutine to be called from a machine program. After
executing the BASIC routine, the program continues with the command following the
CALL.

- 151 -

All registers are changed.

When entering, HL must contain the start address of an ASCII string in which the first
line number of the BASIC subroutine is specified.

Example:

A BASIC subroutine, starting at line number 800, is to be called from a machine
program.

…
…
LD HL,LINENO ; line number to gosub
CALL 1EB1H ; call BASIC subroutine
…
…

LINENO DEFM“800’ ; line number as text
DEFB 0 ; end of text

This is just a small selection of the LASER-ROM routines available. By intensively studying
the documented ROM list, a large number of other routines can be localized and made
usable for calling from machine programs.

- 152 -

- 153 -

- 154 -

